Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Auton Neurosci ; 203: 67-73, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28173996

RESUMEN

Adrenaline is an important counter-regulatory hormone that helps restore glucose homeostasis during hypoglycaemia. However, the neurocircuitry that connects the brain glucose sensors and the adrenal sympathetic outflow to the chromaffin cells is poorly understood. We used electrical microstimulation of the perifornical hypothalamus (PeH) and the rostral ventrolateral medulla (RVLM) combined with adrenal sympathetic nerve activity (ASNA) recording to examine the relationship between the RVLM, the PeH and ASNA. In urethane-anaesthetised male Sprague-Dawley rats, intermittent single pulse electrical stimulation of the rostroventrolateral medulla (RVLM) elicited an evoked ASNA response that consisted of early (60±3ms) and late peaks (135±4ms) of preganglionic and postganglionic activity. In contrast, RVLM stimulation evoked responses in lumbar sympathetic nerve activity that were almost entirely postganglionic. PeH stimulation also produced an evoked excitatory response consisting of both preganglionic and postganglionic excitatory peaks in ASNA. Both peaks in ASNA following RVLM stimulation were reduced by intrathecal kynurenic acid (KYN) injection. In addition, the ASNA response to systemic neuroglucoprivation induced by 2-deoxy-d-glucose was abolished by bilateral microinjection of KYN into the RVLM. This suggests that a glutamatergic pathway from the perifornical hypothalamus (PeH) relays in the RVLM to activate the adrenal SPN and so modulate ASNA. The main findings of this study are that (i) adrenal premotor neurons in the RVLM may be, at least in part, glutamatergic and (ii) that the input to these neurons that is activated during neuroglucoprivation is also glutamatergic.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Vías Autónomas/metabolismo , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Sistema Nervioso Simpático/metabolismo , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/inervación , Anestésicos Intravenosos/farmacología , Animales , Vías Autónomas/efectos de los fármacos , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Hipotálamo/efectos de los fármacos , Ácido Quinurénico/administración & dosificación , Ácido Quinurénico/metabolismo , Vértebras Lumbares , Ratas Sprague-Dawley , Receptores de Glutamato/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Uretano/farmacología
2.
Br J Pharmacol ; 173(9): 1425-37, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26896587

RESUMEN

Adrenaline is a hormone that has profound actions on the cardiovascular system and is also a mediator of the fight-or-flight response. Adrenaline is now increasingly recognized as an important metabolic hormone that helps mobilize energy stores in the form of glucose and free fatty acids in preparation for physical activity or for recovery from hypoglycaemia. Recovery from hypoglycaemia is termed counter-regulation and involves the suppression of endogenous insulin secretion, activation of glucagon secretion from pancreatic α-cells and activation of adrenaline secretion. Secretion of adrenaline is controlled by presympathetic neurons in the rostroventrolateral medulla, which are, in turn, under the control of central and/or peripheral glucose-sensing neurons. Adrenaline is particularly important for counter-regulation in individuals with type 1 (insulin-dependent) diabetes because these patients do not produce endogenous insulin and also lose their ability to secrete glucagon soon after diagnosis. Type 1 diabetic patients are therefore critically dependent on adrenaline for restoration of normoglycaemia and attenuation or loss of this response in the hypoglycaemia unawareness condition can have serious, sometimes fatal, consequences. Understanding the neural control of hypoglycaemia-induced adrenaline secretion is likely to identify new therapeutic targets for treating this potentially life-threatening condition.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Epinefrina/metabolismo , Hipoglucemia/metabolismo , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA