Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 83(11): 4228-36, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21506519

RESUMEN

"K2/SPICE" products are commonly laced with aminoalkylindole synthetic cannabinoids (i.e., JWH-018 and JWH-073) and are touted as "legal" marijuana substitutes. Here we validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring urinary concentrations of JWH-018, JWH-073, and several potential metabolites of each. The analytical procedure has high capacity for sample throughput and does not require solid phase or liquid extraction. Evaluation of human urine specimens collected after the subjects reportedly administered JWH-018 or a mixture of JWH-018 and JWH-073 provides preliminary evidence of clinical utility. Two subjects that consumed JWH-018 primarily excreted glucuronidated conjugates of 5-(3-(1-naphthoyl)-1H-indol-1-yl)-pentanoic acid (>30 ng/mL) and (1-(5-hydroxypentyl)-1H-indol-3-yl)(naphthalene-1-yl)-methanone (>50 ng/mL). Interestingly, oxidized metabolites of both JWH-018 and JWH-073 were detected in these specimens, suggesting either metabolic demethylation of JWH-018 to JWH-073 or a nonreported, previous JWH-073 exposure. Metabolic profiles generated from a subject who consumed a mixture of JWH-018 and JWH-073 were similar to profiles generated from subjects who presumably consumed JWH-018 exclusively. Oxidized metabolites of JWH-018 and JWH-073 were of the same pattern, but JWH-018 metabolites were excreted at lower concentrations. These results begin clinically validating the LC-MS/MS assay for detecting and quantifying aminoalkylindole metabolites. Full validation awaits further testing.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Indoles/metabolismo , Naftalenos/metabolismo , Espectrometría de Masas en Tándem/métodos , Glucuronidasa/metabolismo , Humanos , Indoles/orina , Naftalenos/orina , Oxidación-Reducción
2.
J Pharmacol Exp Ther ; 321(2): 590-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17272674

RESUMEN

The endocannabinoid anandamide is an arachidonic acid derivative that is found in most tissues where it acts as an important signaling mediator in neurological, immune, cardiovascular, and other functions. Cytochromes P450 (P450s) are known to oxidize arachidonic acid to the physiologically active molecules hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs), which play important roles in blood pressure regulation and inflammation. To determine whether anandamide can also be oxidized by P450s, its metabolism by human liver and kidney microsomes was investigated. The kidney microsomes metabolized anandamide to a single mono-oxygenated product, which was identified as 20-HETE-ethanolamide (EA). Human liver microsomal incubations with anandamide also produced 20-HETE-EA in addition to 5,6-, 8,9-, 11-12, and 14,15-EET-EA. The EET-EAs produced by the liver microsomal P450s were converted to their corresponding dihydroxy derivatives by microsomal epoxide hydrolase. P450 4F2 was identified as the isoform that is most probably responsible for the formation of 20-HETE-EA in both human kidney and human liver, with an apparent Km of 0.7 microM. The apparent Km values of the human liver microsomes for the formation of the EET-EAs were between 4 and 5 microM, and P450 3A4 was identified as the primary P450 in the liver responsible for epoxidation of anandamide. The in vivo formation and biological relevance of the P450-derived HETE and EET ethanolamides remains to be determined.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Riñón/metabolismo , Microsomas Hepáticos/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Citocromo P-450 CYP3A , Endocannabinoides , Compuestos Epoxi/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ácidos Hidroxieicosatetraenoicos/metabolismo , Cinética , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA