Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Int J Mol Sci ; 24(19)2023 Oct 01.
Article En | MEDLINE | ID: mdl-37834262

Solenopsis geminata is recognized for containing the allergenic proteins Sol g 1, 2, 3, and 4 in its venom. Remarkably, Sol g 2.1 exhibits hydrophobic binding and has a high sequence identity (83.05%) with Sol i 2 from S. invicta. Notably, Sol g 2.1 acts as a mediator, causing paralysis in crickets. Given its structural resemblance and biological function, Sol g 2.1 may play a key role in transporting hydrophobic potent compounds, which induce paralysis by releasing the compounds through the insect's nervous system. To investigate this further, we constructed and characterized the recombinant Sol g 2.1 protein (rSol g 2.1), identified with LC-MS/MS. Circular dichroism spectroscopy was performed to reveal the structural features of the rSol g 2.1 protein. Furthermore, after treating crickets with S. geminata venom, immunofluorescence and immunoblotting results revealed that the Sol g 2.1 protein primarily localizes to the neuronal cell membrane of the brain and thoracic ganglia, with distribution areas related to octopaminergic neuron cell patterns. Based on protein-protein interaction predictions, we found that the Sol g 2.1 protein can interact with octopamine receptors (OctRs) in neuronal cell membranes, potentially mediating Sol g 2.1's localization within cricket central nervous systems. Here, we suggest that Sol g 2.1 may enhance paralysis in crickets by acting as carriers of active molecules and releasing them onto target cells through pH gradients. Future research should explore the binding properties of Sol g 2.1 with ligands, considering its potential as a transporter for active molecules targeting pest nervous systems, offering innovative pest control prospects.


Ant Venoms , Ants , Cricket Sport , Animals , Ant Venoms/chemistry , Ant Venoms/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Ants/chemistry , Venoms , GTP-Binding Proteins/metabolism , Recombinant Proteins/metabolism , Central Nervous System/metabolism , Paralysis
2.
Heliyon ; 7(11): e08370, 2021 Nov.
Article En | MEDLINE | ID: mdl-34825084

The sea cucumber Holothuria scabra is both an economically important species in Asian countries and an emerging experimental model for research studies in regeneration and medicinal bioactives. Growth factors and their receptors are known to be key components that guide tissue repair and renewal, yet validation of their presence in H. scabra has not been established. We performed a targeted in silico search of H. scabra transcriptome data to elucidate conserved growth factor family and receptor genes. In total, 42 transcripts were identified, of which 9 were validated by gene cloning and sequencing. The H. scabra growth factor genes, such as bone morphogenetic protein 2A (BMP 2A), bone morphogenetic protein 5-like (BMP5-like), neurotrophin (NT) and fibroblast growth factor 18 (FGF18), were selected for further analyses, including phylogenetic comparison and spatial gene expression using RT-PCR and in situ hybridization. Expression of all genes investigated were widespread in multiple tissues. However, BMP 2A, BMP5-like and NT were found extensively in the radial nerve cord cells, while FGF18 was highly expressed in connective tissue layer of the body wall. Our identification and expression analysis of the H. scabra growth factor genes provided the molecular information of growth factors in this species which may ultimately complement the research in regenerative medicine.

3.
Article En | MEDLINE | ID: mdl-34004320

The authors recently reported the presence and distribution of oxytocin/vasopressin-like peptide in Portunus pelagicus as well as demonstrated its function to inhibit ovarian steroid release (Saetan et al., 2018). Here, the full-length receptor of this peptide, namely oxytocin/vasopressin-like peptide receptor (PpelOT/VP-like peptide receptor) is reported. The coding region of the PpelOT/VP-like peptide receptor contained 1497 bp which translationally corresponded to 499 amino acids. Sequence analysis revealed its seven transmembrane characteristics, with -two N-linked glycosylation residues located before the first transmembrane domain (TM I). The phylogenetic tree revealed that the PpelOT/VP-like peptide receptor was placed in the group of invertebrate OT/VP-like receptors, and was clearly distinguishable from the V1R, V2R and OTR of vertebrates. Also, this receptor gene transcript was detected in several organs of the blue swimming crab with highest abundance found in brain tissue. In situ hybridization exhibited its distribution in all neuronal clusters of the eyestalk, brain, ventral nerve cord (VNC), as well as in the ovary. Comparative gene expressions between this receptor and its corresponding peptide in immature and mature female crabs revealed no significant difference of the PpelOT/VP-like peptide receptor gene expression in the central nervous system (CNS) and ovary. In contrast, the PpelOT/VP-like peptide gene was shown to significantly express higher in the VNC of immature crabs and in the ovary of mature crabs. Changes in expression of this peptide gene, but not its receptor, might result in ovarian steroid release inhibition. However, the detailed mechanism of this peptide in reproduction regulation will be included in our further studies.


Brachyura/physiology , Oxytocin/metabolism , Receptors, Peptide/metabolism , Receptors, Vasopressin/physiology , Vasopressins/metabolism , Animals , Central Nervous System/metabolism , Female , Gene Expression Profiling , Ovary/metabolism , Peptides/chemistry , Phylogeny , RNA, Messenger/metabolism , Receptors, Peptide/genetics , Receptors, Vasopressin/metabolism
5.
Heliyon ; 7(1): e05898, 2021 Jan.
Article En | MEDLINE | ID: mdl-33553720

The giant freshwater prawn, Macrobrachium rosenbergii, is an economically valuable species that are distributed throughout the Asia-Pacific region. With the natural population declining due to overfishing, aquaculture of this species is deemed necessary. Hence, it is essential to understand the mechanisms regulating reproduction in order to increase their production. Prostaglandins (PGs) play an important role in reproduction in most vertebrates and several invertebrates. It has been proposed that crustaceans have PGs but the prostanoids pathway in the giant freshwater prawn is still unclear. In this study, we identified 25 prostanoid-related genes involved in the biosynthesis of active prostanoids in M. rosenbergii using in silico searches of transcriptome data. Comparative analysis of encoded proteins for the MroPGES2 gene with other species was performed to confirm their evolutionary conservation. Gene expression analysis revealed the correlation of MroPGES2 gene expression level with the progress of ovarian development. Eyestalk ablation increased the expression level of MroPGES2 gene compared to intact groups during the ovary maturation stages. Collectively, this study confirmed the existence of prostanoids in the giant freshwater prawn, as well as characterizing key gene MroPGES2 associated with the prostanoid pathway. We propose that MroPGES2 may play an important role in M. rosenbergii ovarian maturation and its expression is under the inhibitory control from the eyestalk optic ganglion hormones. Identification of genes in prostanoid pathway and their expressions enables future functional studies to be performed, which may lead to applications in the aquaculture of this species.

6.
Acta Histochem ; 122(1): 151457, 2020 Jan.
Article En | MEDLINE | ID: mdl-31708231

Serotonin (5-HT) plays pivotal roles in many physiological processes including reproduction of crustaceans, which are mediated 5-HT receptors. The distributions of 5-HT and its receptor have never been explored in Portunus pelagicus. To validate the targets which indirectly indicate the roles of 5-HT in this crab, we have investigated the distribution of 5-HT in the central nervous system (CNS) and ovary using immunohistochemistry and tissue expression of its receptor by RT-PCR. In the brain, 5-HT immunoreactivity (-ir) was detected in clusters 6, 7, 8, 11, 14, 15 and the fibers. In the ventral nerve cord (VNC), 5-HT-ir was detected in pairs of neurons and the fibers connected to the neurons. In the ovary, 5-HT-ir was intense in the oocyte step 1 (Oc1) and Oc2, and its intensity was slightly decreased in Oc3 and Oc4. The 5-HT receptor was molecularly characterized to be type 7, and it was strongly expressed in the eyestalk, brain, VNC, mature ovary and muscle. Due to the presence of 5-HT receptor we suggest that 5-HT acts primarily at the CNS and ovary, thus implicating its role in reproduction especially in the development of oocytes though its exact function in this crab needed to be explored further.


Arthropod Proteins , Brachyura , Central Nervous System/metabolism , Ovary/metabolism , Receptors, Serotonin , Serotonin , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Brachyura/genetics , Brachyura/metabolism , Cloning, Molecular , Female , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Serotonin/genetics , Serotonin/metabolism
7.
Anim Reprod Sci ; 208: 106122, 2019 Sep.
Article En | MEDLINE | ID: mdl-31405473

The vitellogenesis-inhibiting hormone (VIH), also known as gonad-inhibiting hormone, is a neuropeptide hormone in crustaceans that belongs to the crustacean hyperglycemic hormone (CHH)-family peptide. There is regulation vitellogenesis by VIH during gonad maturation in crustaceans. A full-length Scylla olivacea VIH (Scyol-VIH) was identified through reverse transcription polymerase chain reaction and rapid amplification of cDNA ends. The open reading frame consists of 378 nucleotides, which encodes a 126-amino acid precursor protein, including a 22-residue signal peptide and a 103-amino acid mature peptide in which 6 highly conserved cysteine residues are present. There was expression of the Scyol-VIH gene in immature female Scylla olivacea in the eyestalk, brain and ventral nerve cord. The Scyol-VIH gene expression was localized to the eyestalk X-organ, brain neuronal clusters 6 and 11, and in multiple neuronal clusters of the ventral nerve cord. The relative abundance of Scyol-VIH mRNA transcript in the eyestalk was relatively greater in immature stage females, then decreased as ovarian maturation progressed. Furthermore, eyestalk Scyol-VIH increased after dopamine (5 µg/g BW) injection. The present research provides fundamental information about Scyol-VIH and its potential effect in controlling reproduction.


Brachyura/physiology , Dopamine/pharmacology , Invertebrate Hormones/metabolism , Ovary/growth & development , RNA, Messenger/metabolism , Amino Acid Sequence , Animals , Base Sequence , Brachyura/genetics , Cloning, Molecular , Dopamine/administration & dosage , Dopamine Agents/pharmacology , Dopamine Antagonists/administration & dosage , Dopamine Antagonists/pharmacology , Female , Gene Expression Regulation/drug effects , Invertebrate Hormones/genetics , Ovary/metabolism , Phylogeny , RNA, Messenger/genetics , Serotonin/administration & dosage , Serotonin/pharmacology , Serotonin Agents/administration & dosage , Serotonin Agents/pharmacology , Sexual Maturation , Spiperone/administration & dosage , Spiperone/pharmacology , Time Factors
8.
Acta Histochem ; 121(2): 143-150, 2019 Feb.
Article En | MEDLINE | ID: mdl-30497687

The mud crab, Scylla olivacea, is a high value economic marine animal in Thailand. However, collection of these crabs from natural habitat for local consumption and export has caused rapid population decline. Hence, aquaculture of this species is required and to this measure understanding of endocrine control of their reproduction must be understood. Egg laying hormone (ELH) is a neuropeptide synthesized by the bag cells (neurons) in the abdominal ganglia of Aplysia gastropods. It plays a critical role in controlling egg production and laying in gastropods, and its possible homolog (ELH-like peptide) was reported in the neural and ovarian tissues of prawns and recently in female reproductive tract of the blue swimming crab, Portunus pelagicus. In this study, we have studied the histology of the male reproductive tract in Scylla olivacea which are comprised of anterior testis, posterior testis, early proximal spermatic duct (ePSD), proximal spermatic duct (PSD), middle spermatic duct (MSD) and distal spermatic duct (DSD), by immunohistochemistry, detected an abalone ELH- immunoreactivity (aELH-ir) in epithelium of ducts in posterior testis and epithelium of all parts of spermatic duct. Furthermore, we could detect aELH-ir in neurons of cluster 9, 11, olfactory neuropil (ON) in the brain and in the small neurons located between the third and the fourth thoracic neuropils (T3-T4) and between the fourth and the fifth thoracic neuropils (T4-T5) of thoracic ganglia. Thus, the presence of aELH in male S. olivacea was designated the role of female egg laying behavior in the male mud crab.


Brachyura/metabolism , Central Nervous System/metabolism , Invertebrate Hormones/metabolism , Peptide Hormones/metabolism , Reproduction/physiology , Testis/metabolism , Animals , Gastropoda/metabolism , Immunohistochemistry/methods , Male , Neurons/metabolism
9.
Anim Reprod Sci ; 198: 220-232, 2018 Nov.
Article En | MEDLINE | ID: mdl-30292571

Prostaglandins have important physiological roles in marine invertebrates, including larval development and reproduction. The prostaglandin E concentration fluctuates during the ovarian development of crustaceans. The biosynthetic pathway of prostaglandin, however, has not been well studied in portunid crabs, including in the mud crab, Scylla olivacea. In this study, the aim was to investigate the presence of prostaglandin E synthase (PGES), enzyme that catalyzes the terminal conversion in the prostaglandin E2 (PGE2) biosynthesis, and its gene expression in the central nervous system (CNS) and ovary during ovarian maturation of S. olivacea. cDNA sequence encoding PGES was cloned from the S. olivacea ovary. The PGES transcript of S. olivacea (Scyol-PGES) consists of 1258 nucleotides, which encodes for 420 amino acid PGES protein precursor. Investigation of gene expression by RT-PCR indicated that Scyol-PGES was detected in all organs studied. Based on in situ hybridization, Scyol-PGES was detected in the I to III stages for oocyte development of Stage 3 of ovarian development, and in the CNS, including the various neuronal clusters of the brain. In the ventral nerve cord, the Scyol-PGES gene was expressed in the neurons within the subesophageal, thoracic and abdominal ganglia. The Scyol-PGES gene expression as indicated by relative abundance of mRNA in the Stage 4 of ovarian development was greater than that at Stages 1 to 3 of ovarian development. This is the first report on PGES in the mud crab, S. olivacea, and its gene expression suggested the involvement of PGES in the ovarian development of this species.


Brachyura/growth & development , Brachyura/genetics , Central Nervous System/metabolism , Ovary/physiology , Prostaglandin-E Synthases/genetics , Animals , Brachyura/enzymology , Brachyura/metabolism , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Ovary/metabolism , Prostaglandin-E Synthases/metabolism , Sexual Maturation/physiology
10.
BMC Genomics ; 17: 587, 2016 08 09.
Article En | MEDLINE | ID: mdl-27506197

BACKGROUND: The giant freshwater prawn, Macrobrachium rosenbergii, is a decapod crustacean that is commercially important as a food source. Farming of commercial crustaceans requires an efficient management strategy because the animals are easily subjected to stress and diseases during the culture. Autophagy, a stress response process, is well-documented and conserved in most animals, yet it is poorly studied in crustaceans. RESULTS: In this study, we have performed an in silico search for transcripts encoding autophagy-related (Atg) proteins within various tissue transcriptomes of M. rosenbergii. Basic Local Alignment Search Tool (BLAST) search using previously known Atg proteins as queries revealed 41 transcripts encoding homologous M. rosenbergii Atg proteins. Among these Atg proteins, we selected commonly used autophagy markers, including Beclin 1, vacuolar protein sorting (Vps) 34, microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B), p62/sequestosome 1 (SQSTM1), and lysosomal-associated membrane protein 1 (Lamp-1) for further sequence analyses using comparative alignment and protein structural prediction. We found that crustacean autophagy marker proteins contain conserved motifs typical of other animal Atg proteins. Western blotting using commercial antibodies raised against human Atg marker proteins indicated their presence in various M. rosenbergii tissues, while immunohistochemistry localized Atg marker proteins within ovarian tissue, specifically late stage oocytes. CONCLUSIONS: This study demonstrates that the molecular components of autophagic process are conserved in crustaceans, which is comparable to autophagic process in mammals. Furthermore, it provides a foundation for further studies of autophagy in crustaceans that may lead to more understanding of the reproduction- and stress-related autophagy, which will enable the efficient aquaculture practices.


Autophagy/genetics , Crustacea/genetics , Gene Expression Profiling , Transcriptome , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Biomarkers , Crustacea/metabolism , Data Mining , Databases, Genetic , Gene Expression , Genomics/methods , Mammals , Models, Molecular , Protein Conformation
11.
Acta Histochem ; 117(2): 196-204, 2015 Mar.
Article En | MEDLINE | ID: mdl-25618422

In crustaceans serotonin (5-HT) and dopamine (DA) are neurotransmitters that play roles in the modulation of numerous physiological functions, including reproduction. However, in the mud crab, Scylla olivacea, the distributions of 5-HT and DA in the CNS have not yet been investigated. The aim of our study was to map the distributions of these two neurotransmitters in the central nervous system (CNS) of the female of this crab during the late stage of ovarian development. We found 5-HT immunoreactivity (-ir) and DA-ir in many parts of the CNS, including the eyestalk, brain, and thoracic ganglia. In the eyestalk, 5-HT-ir was localized in the medulla terminalis (MT), hemi-ellipsoid body (HB), and protocerebral tract (PT), whereas DA-ir was present in neuronal cluster 1, the LG neuropils, and PT. In the brain, 5-HT-ir and DA-ir were detected in cells and fibers of neuronal clusters 6, 7, 8, 9, 10, 11, 14, and 15. In the ventral nerve cord, 5-HT-ir was present in neurons of the abdominal ganglia, whereas DA was only present in fibers. These spatial distributions of 5-HT and DA suggest that they may be involved in the neuromodulation of important physiological functions, including ovarian maturation, as shown in other non-crab decapods.


Brachyura/metabolism , Central Nervous System/metabolism , Dopamine/metabolism , Neurotransmitter Agents/metabolism , Serotonin/metabolism , Animals , Female
12.
PLoS One ; 9(12): e115867, 2014.
Article En | MEDLINE | ID: mdl-25542017

The central nervous system (CNS) is often intimately involved in reproduction control and is therefore a target organ for transcriptomic investigations to identify reproduction-associated genes. In this study, 454 transcriptome sequencing was performed on pooled brain and ventral nerve cord of the female mud crab (Scylla olivacea) following serotonin injection (5 µg/g BW). A total of 197,468 sequence reads was obtained with an average length of 828 bp. Approximately 38.7% of 2,183 isotigs matched with significant similarity (E value < 1e-4) to sequences within the Genbank non-redundant (nr) database, with most significant matches being to crustacean and insect sequences. Approximately 32 putative neuropeptide genes were identified from nonmatching blast sequences. In addition, we identified full-length transcripts for crustacean reproductive-related genes, namely farnesoic acid o-methyltransferase (FAMeT), estrogen sulfotransferase (ESULT) and prostaglandin F synthase (PGFS). Following serotonin injection, which would normally initiate reproductive processes, we found up-regulation of FAMeT, ESULT and PGFS expression in the female CNS and ovary. Our data here provides an invaluable new resource for understanding the molecular role of the CNS on reproduction in S. olivacea.


Brachyura/genetics , Brachyura/physiology , Serotonin/pharmacology , Transcriptome/drug effects , Amino Acid Sequence , Animals , Brachyura/drug effects , Brachyura/enzymology , Brain/drug effects , Brain/metabolism , Female , Gene Ontology , Molecular Sequence Data , Neuropeptides/genetics , Ovary/drug effects , Ovary/metabolism , Ovary/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproduction/drug effects , Reproduction/genetics , Sequence Analysis
13.
Microsc Res Tech ; 77(3): 189-200, 2014 Mar.
Article En | MEDLINE | ID: mdl-24375748

The mud crab, Scylla olivacea, is one of the most economically valuable marine species in Southeast Asian countries. However, commercial cultivation is disadvantaged by reduced reproductive capacity in captivity. Therefore, an understanding of the general and detailed anatomy of central nervous system (CNS) is required before investigating the distribution and functions of neurotransmitters, neurohormones, and other biomolecules, involved with reproduction. We found that the anatomical structure of the brain is similar to other crabs. However, the ventral nerve cord (VNC) is unlike other caridian and dendrobrachiate decapods, as the subesophageal (SEG), thoracic and abdominal ganglia are fused, due to the reduction of abdominal segments and the tail. Neurons in clusters within the CNS varied in sizes, and we found that there were five distinct size classes (i.e., very small globuli, small, medium, large, and giant). Clusters in the brain and SEG contained mainly very small globuli and small-sized neurons, whereas, the VNC contained small-, medium-, large-, and giant-sized neurons. We postulate that the different sized neurons are involved in different functions.


Brachyura/cytology , Central Nervous System/cytology , Animals , Brachyura/anatomy & histology , Brain/ultrastructure , Central Nervous System/anatomy & histology , Female , Microscopy, Polarization , Neurons/ultrastructure
14.
Gen Comp Endocrinol ; 185: 28-36, 2013 May 01.
Article En | MEDLINE | ID: mdl-23376531

Red pigment concentrating hormone (RPCH) is a member of the chromatophorotropic hormones and, in crustaceans, it is synthesized in the eyestalk. We have isolated a full-length cDNA for a RPCH preprohormone gene (Scyol-RPCH) from the eyestalks of female mud crabs, Scylla olivacea. The open reading frame consists of 642 nucleotides, and encodes a deduced 108 amino acid precursor protein, which includes a signal peptide, the RPCH (pQLNFSPGWamide), and an associated peptide. We show that the mud crab RPCH peptide exhibits 100% identity with 15 other decapods. Expression of Scyol-RPCH within adult mud crab takes place in the eyestalk, brain, and ventral nerve cord, comprising subesophageal ganglion, thoracic ganglion, and abdominal ganglion. In situ hybridization demonstrates specific expression within neuronal clusters 1, 2, 3, and 4 of the eyestalk X-organ, clusters 6, 8, 9, 10, and 17 of the brain, and in neuronal clusters of the ventral nerve cord. We found that administration of 5-HT up-regulates RPCH gene expression in the eyestalk, suggesting that RPCH may play a role as a downstream hormone of 5-HT.


Brachyura/metabolism , Invertebrate Hormones/biosynthesis , Oligopeptides/biosynthesis , Protein Precursors/biosynthesis , Pyrrolidonecarboxylic Acid/analogs & derivatives , Serotonin/pharmacology , Amino Acid Sequence , Animals , Base Sequence , Brachyura/genetics , Female , Gene Expression/drug effects , Invertebrate Hormones/genetics , Male , Molecular Sequence Data , Oligopeptides/genetics , Phylogeny , Protein Precursors/genetics , Sequence Alignment , Tissue Distribution
15.
PLoS One ; 7(3): e33154, 2012.
Article En | MEDLINE | ID: mdl-22432001

Ovary maturation, oocyte differentiation, and embryonic development in shrimp are highly dependent on nutritional lipids taken up by female broodstocks. These lipids are important as energy sources as well as for cell signaling. In this study, we report on the compositions of major lipids, i.e. phosphatidylcholines (PCs), triacylglycerols (TAGs), and fatty acids (FAs), in the ovaries of the banana shrimp, Penaeus merguiensis, during ovarian maturation. Thin-layer chromatography analysis showed that the total PC and TAG signal intensities increased during ovarian maturation. Further, by using gas chromatography, we found that (1) FAs 14:0, 16:1, 18:1, 18:2, 20:1, and 22:6 proportionally increased as ovarian development progressed to more mature stages; (2) FAs 16:0, 18:0, 20:4, and 20:5 proportionally decreased; and (3) FAs 15:0, 17:0, and 20:2 remained unchanged. By using imaging mass spectrometry, we found that PC 16:0/16:1 and TAG 18:1/18:2/22:6 were detected in oocytes stages 1 and 2. PCs 16:1/20:4, 16:0/22:6, 18:3/22:6, 18:1/22:6, 20:5/22:6, and 22:6/22:6 and TAGs 16:0/16:1/18:3, 16:0/18:1/18:3, 16:0/18:1/18:1, and 16:0/18:2/22:6 were present in all stages of oocytes. In contrast, the PC- and TAG-associated FAs 20:4, 20:5, and 22:6 showed high signal intensities in stage 3 and 4 oocytes. These FAs may act as nutrition sources as well as signaling molecules for developing embryos and the hatching process. Knowledge of lipid compositions and localization could be helpful for formulating the diet for female broodstocks to promote fecundity and larval production.


Imaging, Three-Dimensional/methods , Lipid Metabolism , Lipids/analysis , Mass Spectrometry/methods , Ovary/growth & development , Ovary/metabolism , Penaeidae/metabolism , Animals , Chromatography, Thin Layer , Fatty Acids/analysis , Female , Gas Chromatography-Mass Spectrometry , Lipids/isolation & purification , Organ Size , Ovary/cytology , Penaeidae/anatomy & histology , Phosphatidylcholines/analysis , Triglycerides/analysis
16.
Cell Tissue Res ; 345(1): 103-24, 2011 Jul.
Article En | MEDLINE | ID: mdl-21607566

We investigated changes in serotonin (5-HT) and dopamine (DA) levels and in their distribution patterns in the central nervous system (CNS) and ovary during the ovarian maturation cycle in the Pacific white shrimp, Litopenaeus vannamei. The concentrations of these two neurotransmitters were determined by using high performance liquid chromatography with electrochemical detection. The 5-HT concentration exhibited a gradual increase in the brain and thoracic ganglia during early ovarian stages I, II, and III, reaching a maximum at the mature ovarian stage IV, whereas DA showed its highest concentration at ovarian stage II in the brain and thoracic ganglia and then declined to its lowest concentration at ovarian stage IV. In the ovaries, 5-HT was lowest at ovarian stage I and gradually increased to a peak at ovarian stage IV. Conversely, the concentration of DA was highest at ovarian stages I and II and lowest at ovarian stage IV. In the brain, 5-HT immunoreactivity (-ir) from stage IV and DA-ir from stage II were distributed extensively in neurons of clusters 6, 11, and 17, in fibers, and in the anterior and posterior medial protocerebral, olfactory, antenna II, and tegumentary neuropils. In the circumesophageal, subesophageal, thoracic, and abdominal ganglia, both 5-HT-ir and DA-ir were detected in neuropils and surrounding neurons and fibers. 5-HT-ir and DA-ir were more intense in the thoracic ganglia than in other parts of the CNS. In the ovary, 5-HT-ir exhibited high intensity in late oocytes, whereas DA-ir was more intense in early oocytes. Thus, opposing changes occur in the levels of these two neurotransmitters and in their specific localizations in the CNS and ovary during ovarian maturation, indicating their important involvement in female reproduction.


Central Nervous System/metabolism , Dopamine/metabolism , Ovary/metabolism , Ovary/physiology , Penaeidae/metabolism , Penaeidae/physiology , Serotonin/metabolism , Animals , Cell Count , Central Nervous System/cytology , Chromatography, High Pressure Liquid , Female , Fluorescent Antibody Technique , Neurons/cytology , Neurons/metabolism , Ovary/cytology , Pacific Ocean , Penaeidae/cytology , Reference Standards
17.
Cell Tissue Res ; 343(3): 579-93, 2011 Mar.
Article En | MEDLINE | ID: mdl-21243376

We used antibodies against octopus gonadotropin-releasing hormone (octGnRH) and tunicate GnRH (tGnRH-I) in order to investigate the existence and distribution of GnRH-like peptides in the central nervous system (CNS) and in the ovary during various stages of the ovarian cycle of the white shrimp, Litopenaeus vannamei. OctGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in several regions of the supraesophageal ganglion (brain), subesophageal ganglion (SEG), thoracic ganglia, and abdominal ganglia. In the brain, both octGnRH immunoreactivity (ir) and tGnRH-I-ir were detected in neurons of clusters 6, 11, 17, and associated fibers, and the anterior medial protocerebral, posterior medial protocerebral, olfactory, and tegumentary neuropils. In the SEG and thoracic ganglia, octGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in dorsolateral and ventromedial cell clusters and in surrounding fibers. Only immunoreactive fibers were detected in the abdominal ganglia. In the ovary, both octGnRH and tGnRH-I were detected at medium intensity in the cytoplasm of early step oocytes (Oc2) and, at high intensity, in Oc3. Furthermore, octGnRH-ir and tGnRH-I-ir were intense in follicular cells surrounding Oc2 and Oc3. The presence of GnRH-ir in the CNS and ovary indicates that GnRH-like peptides occur in the white shrimp, and that GnRHs are involved in the reproductive process, especially ovarian maturation and the differentiation of oocytes, as reported in other species.


Central Nervous System/metabolism , Gonadotropin-Releasing Hormone/metabolism , Ovary/metabolism , Penaeidae/anatomy & histology , Penaeidae/metabolism , Peptides/metabolism , Animals , Antibodies/metabolism , Central Nervous System/cytology , Female , Immunohistochemistry , Ovary/cytology , Protein Isoforms/metabolism , Tissue Distribution
18.
Tissue Cell ; 42(5): 293-300, 2010 Oct.
Article En | MEDLINE | ID: mdl-20817240

The androgenic glands (AG) of male decapod crustaceans produce insulin-like androgenic gland (IAG) hormone that controls male sex differentiation, growth and behavior. Functions of the AG are inhibited by gonad-inhibiting hormone originating from X-organ-sinus gland complex in the eyestalk. The AG, and its interaction with the eyestalk, had not been studied in the blue swimmer crab, Portunus pelagicus, so we investigated the AG structure, and then changes of the AG and IAG-producing cells following eyestalk ablation. The AG of P. pelagicus is a small endrocrine organ ensheathed in a connective tissue and attached to the distal part of spermatic duct and ejaculatory bulb. The gland is composed of several lobules, each containing two major cell types. Type I cells are located near the periphery of each lobule, and distinguished as small globular cells of 5-7 µm in diameter, with nuclei containing mostly heterochromatin. Type II cells are 13-15 µm in diameter, with nuclei containing mostly euchromatin and prominent nucleoli. Both cell types were immunoreactive with anti-IAG. Following bilateral eyestalk ablation, the AG underwent hypertrophy, and at day 8 had increased approximately 3-fold in size. The percentage of type I cells had increased more than twice compared with controls, while type II cells showed a corresponding decrease.


Endocrine Glands/pathology , Gonadal Hormones/biosynthesis , Amino Acid Sequence , Androgens/metabolism , Animals , Brachyura , Endocrine Glands/cytology , Eye , Gonadal Hormones/immunology , Gonads/cytology , Gonads/pathology , Hypertrophy , Male , Molecular Sequence Data , Sequence Alignment , Sex Differentiation
...