Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949911

RESUMEN

Plant fungal parasites manipulate host metabolism to support their own survival. Among the many central metabolic pathways altered during infection, the glyoxylate cycle is frequently upregulated in both fungi and their host plants. Here, we examined the response of the glyoxylate cycle in bread wheat (Triticum aestivum) to infection by the obligate biotrophic fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Gene expression analysis revealed that wheat genes encoding the two unique enzymes of the glyoxylate cycle, isocitrate lyase (TaICL) and malate synthase, diverged in their expression between susceptible and resistant Pst interactions. Focusing on TaICL, we determined that the TaICL B homoeolog is specifically upregulated during early stages of a successful Pst infection. Furthermore, disruption of the B homoeolog alone was sufficient to significantly perturb Pst disease progression. Indeed, Pst infection of the TaICL-B disruption mutant (TaICL-BY400*) was inhibited early during initial penetration, with the TaICL-BY400* line also accumulating high levels of malic acid, citric acid, and aconitic acid. Exogenous application of malic acid or aconitic acid also suppressed Pst infection, with trans-aconitic acid treatment having the most pronounced effect by decreasing fungal biomass 15-fold. Thus, enhanced TaICL-B expression during Pst infection may lower accumulation of malic acid and aconitic acid to promote Pst proliferation. As exogenous application of aconitic acid and malic acid has previously been shown to inhibit other critical pests and pathogens, we propose TaICL as a potential target for disruption in resistance breeding that could have wide-reaching protective benefits for wheat and beyond.

2.
Nat Plants ; 9(3): 385-392, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797350

RESUMEN

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.


Asunto(s)
Magnaporthe , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Brasil , Bangladesh
3.
Plant Cell ; 33(5): 1728-1747, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33565586

RESUMEN

Plant pathogens suppress defense responses to evade recognition and promote successful colonization. Although identifying the genes essential for pathogen ingress has traditionally relied on screening mutant populations, the post-genomic era provides an opportunity to develop novel approaches that accelerate identification. Here, RNA-seq analysis of 68 pathogen-infected bread wheat (Triticum aestivum) varieties, including three (Oakley, Solstice and Santiago) with variable levels of susceptibility, uncovered a branched-chain amino acid aminotransferase (termed TaBCAT1) as a positive regulator of wheat rust susceptibility. We show that TaBCAT1 is required for yellow and stem rust infection and likely functions in branched-chain amino acid (BCAA) metabolism, as TaBCAT1 disruption mutants had elevated BCAA levels. TaBCAT1 mutants also exhibited increased levels of salicylic acid (SA) and enhanced expression of associated defense genes, indicating that BCAA regulation, via TaBCAT1, has a key role in SA-dependent defense activation. We also identified an association between the levels of BCAAs and resistance to yellow rust infection in wheat. These findings provide insight into SA-mediated defense responses in wheat and highlight the role of BCAA metabolism in the defense response. Furthermore, TaBCAT1 could be manipulated to potentially provide resistance to two of the most economically damaging diseases of wheat worldwide.


Asunto(s)
Aminoácidos/metabolismo , Basidiomycota/fisiología , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Transaminasas/metabolismo , Triticum/enzimología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homeostasis , Mitocondrias/metabolismo , Modelos Biológicos , Mutación/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo
4.
Plant Biotechnol J ; 17(12): 2234-2245, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31022324

RESUMEN

Plant synthetic biology and cereal engineering depend on the controlled expression of transgenes of interest. Most engineering in plant species to date has relied heavily on the use of a few, well-established constitutive promoters to achieve high levels of expression; however, the levels of transgene expression can also be influenced by the use of codon optimization, intron-mediated enhancement and varying terminator sequences. Most of these alternative approaches for regulating transgene expression have only been tested in small-scale experiments, typically testing a single gene of interest. It is therefore difficult to interpret the relative importance of these approaches and to design engineering strategies that are likely to succeed in different plant species, particularly if engineering multigenic traits where the expression of each transgene needs to be precisely regulated. Here, we present data on the characterization of 46 promoters and 10 terminators in Medicago truncatula, Lotus japonicus, Nicotiana benthamiana and Hordeum vulgare, as well as the effects of codon optimization and intron-mediated enhancement on the expression of two transgenes in H. vulgare. We have identified a core set of promoters and terminators of relevance to researchers engineering novel traits in plant roots. In addition, we have shown that combining codon optimization and intron-mediated enhancement increases transgene expression and protein levels in barley. Based on our study, we recommend a core set of promoters and terminators for broad use and also propose a general set of principles and guidelines for those engineering cereal species.


Asunto(s)
Grano Comestible/genética , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Ingeniería Genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transgenes
5.
Theor Appl Genet ; 126(7): 1733-47, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23553443

RESUMEN

The introduction of Reduced height (Rht)-B1b and Rht-D1b into bread wheat (Triticum aestivum) varieties was a key component of the 'green revolution' and today these alleles are the primary sources of semi-dwarfism in wheat. The Rht-1 loci encode DELLA proteins, which are transcription factors that affect plant growth and stress tolerance. In bread wheat, Rht-D1b and Rht-B1b influence resistance to the disease Fusarium Head Blight. To identify Rht-1 variants, locus specific primers were developed and used to sequence the entire open reading frame (ORF) and 1.7 kb of the 5' and 0.5 kb of the 3' flanking regions of Rht-A1 (Rht-A1+f), Rht-B1 (Rht-B1+f), and Rht-D1 (Rht-D1+f) in bread wheat (36 sequences from each genome) and tetraploid and diploid wheat (TDW) (one to three sequences from each genome). Among the bread wheat accessions, the Rht-A1+f and Rht-D1+f sequences contained relatively low genetic diversity and few haplotypes relative to the Rht-B1+f sequences. The TDW accessions were relatively rich in genetic diversity and contained the majority of the polymorphic sites. Novel polymorphisms, relative to 'Chinese Spring', discovered among the accessions include 160 and 197 bp insertions 5' of Rht-B1 and a frameshift in the Rht-B1 ORF. Quantitative real-time PCR using shoot and leaf tissue from 5-day-old seedlings of genotypes lacking or containing the 5' insertions revealed no major effect on Rht-B1 transcript accumulation. This research provides insights into the genetic diversity present at the Rht-1 loci in modern bread wheat and in relation to ancestral wheat accessions.


Asunto(s)
Haplotipos , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Biología Computacional , Reacción en Cadena de la Polimerasa
6.
Plant Signal Behav ; 6(6): 843-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21558816

RESUMEN

Xylem vessels are cells that develop a specifically ornamented secondary cell wall to ensure their vascular function, conferring both structural strength and impermeability. Further plasticity is given to these vascular cells by a range of different patterns described by their secondary cell walls that-as for the growth of all plant organs-are developmentally regulated. Microtubules and their associated proteins, named MAPs, are essential to define the shape, the orientation, the position and the overall pattern of these secondary cell walls. Key actors in this process are the land-plant specific MAP70 proteins which not only allow the secondary cell wall to be positioned at the cell cortex but also determine the overall pattern described by xylem vessel secondary cell walls. 


Asunto(s)
Arabidopsis/citología , Tipificación del Cuerpo , Pared Celular/metabolismo , Xilema/citología , Xilema/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Tipificación del Cuerpo/genética , Pared Celular/genética , Pared Celular/ultraestructura , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Imagenología Tridimensional , Proteínas Asociadas a Microtúbulos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Xilema/genética , Xilema/ultraestructura
7.
Curr Biol ; 20(8): 744-9, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20399097

RESUMEN

Xylem tracheary elements (TEs) form hollow, sap-conducting tubes kept open by thickened ribs of secondary cell wall that provide the major structural element in wood. These ribs are enriched with cellulose and lignin, molecules that utilize more atmospheric CO(2) than any other biopolymer on Earth. The thickenings form characteristic patterns (e.g., spiral and pitted) that depend upon the bundling of underlying microtubules [1, 2]. To identify microtubule-associated proteins (MAPs) involved in patterning microtubules, we optimized an in vitro system for triggering single Arabidopsis cells to differentiate synchronously into TEs. From more than 200 microtubule-implicated proteins, AtMAP70-5 was the only MAP upregulated upon, and specific to, TE differentiation. It lines the borders of each microtubule bundle and forms C-shaped "spacers" between adjacent bundles. Manipulating levels of AtMAP70-5 and its binding partner AtMAP70-1 by overexpression or RNA interference (RNAi) silencing shifted the balance between the characteristic patterns. RNAi silencing produced stunted plants with disorganized vascular bundles. In culture, RNAi knockdown caused ribs of secondary cell wall, surrounded by microtubules, to invaginate and fall into the cytoplasm. These results suggest that AtMAP70-5 and AtMAP70-1 are essential for defining where secondary cell wall polymers are applied at the cell cortex in wood-forming cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Madera/citología , Proteínas de Arabidopsis/genética , Diferenciación Celular/fisiología , Línea Celular , Pared Celular/química , Pared Celular/metabolismo , Pared Celular/ultraestructura , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Polímeros/química , Polímeros/metabolismo , Interferencia de ARN , Técnicas del Sistema de Dos Híbridos , Madera/química , Xilema/citología
8.
J Cell Sci ; 120(Pt 13): 2241-7, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17567681

RESUMEN

AtMAP70-5 is the most divergent of a recently described multigene family of plant-specific microtubule-associated proteins (MAPs). It is significantly smaller than other members and has several isoform-specific sequence features. To confirm that this protein still functions as a MAP we show that it directly binds microtubules in vitro and decorates microtubules in vivo. When added to tubulin polymerization assays, AtMAP70-5 increases the length distribution profile of microtubules indicating that it stabilizes microtubule dynamics. The overexpressed fusion protein perturbs cell polarity in cell suspensions by inducing extra poles for growth. Similarly, in Arabidopsis plants the overexpression of AtMAP70-5 causes epidermal cells to swell; it also stunts growth and induces right-handed organ twisting. RNAi-mediated downregulation of AtMAP70-5 results in reduced inflorescence stem length and diameter and individual cells are inhibited in their capacity for expansion. These observations suggest that the control over AtMAP70-5 expression levels is important in order to maintain axial polarity and to ensure regular extension of plant organs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polaridad Celular/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tallos de la Planta/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Expresión Génica , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/química , Microtúbulos/genética , Tallos de la Planta/química , Tallos de la Planta/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
Plant J ; 42(4): 547-55, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15860013

RESUMEN

Most plant microtubule-associated proteins (MAPs) have homologues across the phylogenetic spectrum. To find potential plant-specific MAPs that will have evaded bioinformatic searches we devised a low stringency method for isolating proteins from an Arabidopsis cell suspension on endogenous taxol-microtubules. By tryptic peptide mass fingerprinting we identified 55 proteins that were enriched on taxol-microtubules. Amongst a range of known MAPs, such as kinesins, MAP65 isoforms and MOR1, we detected 'unknown' 70 kDa proteins that belong to a family of five closely related Arabidopsis proteins having no known homologues amongst non-plant organisms. To verify that AtMAP70-1 associates with microtubules in vivo, it was expressed as a GFP fusion. This confirmed that the protein decorates all four microtubule arrays in both transiently infected Arabidopsis and stably transformed tobacco BY-2 suspension cells. Microtubule-directed drugs perturbed the localization of AtMAP70-1 but cytochalasin D did not. AtMAP70-1 contains four predicted coiled-coil domains and truncation studies identified a central domain that targets the fusion protein to microtubules in vivo. This study therefore introduces a novel family of plant-specific proteins that interact with microtubules.


Asunto(s)
Proteínas de Arabidopsis/aislamiento & purificación , Arabidopsis/química , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Regulación de la Expresión Génica de las Plantas , Proteínas Asociadas a Microtúbulos/química , Datos de Secuencia Molecular , Alineación de Secuencia , Homología de Secuencia de Aminoácido
10.
Inorg Chem ; 37(15): 3809-3819, 1998 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-11670484

RESUMEN

Electronic absorption and emission spectra are reported for luminescent d(0) monoimido group 5 compounds M(NR)Cl(3)L(2) (M = Nb, Ta; R = alkyl, aryl; L = dme, Cl(-), py). These compounds display weak (epsilon < 200 M(-)(1) cm(-)(1)), well-resolved lowest-energy transitions in the high-energy visible and near-UV regions (20 000 < E(abs) < 29 000 cm(-)(1)). The energy of this absorption band depends strongly on the nature of the imido substituent, with a significant decrease observed when aryl groups are present. Excitation into this transition results in long-lived luminescent excited states. Long emission lifetimes (50 ns to 17 &mgr;s) and high quantum yields (0.001-0.24) are observed, decreasing primarily as a function of the alkyl substituent, being lowest in the aryl imidos. Good overlap is observed with absorption, excitation, and emission mirror spectra, indicating absorption into and emission from the same excited state. The data are consistent with absorption into and emission from a (3)(nb, pi) state, or d(xy)() <-- Ta-N pi. Semiempirical molecular orbital calculations are presented which suggest that the imido compounds may be considered as having highly mixed but localized Ta=N pi-bonding. A significant difference is noted in [Ta(NPh)Cl(5)](2)(-), in which there is appreciable aryl character in Ta=N pi-type orbitals. This accounts for the difference in electronic properties of the aryl imidos compared to the alkyl imidos. An analysis of radiative and nonradiative excited-state deactivation pathways is presented. Significantly, an energy gap law correlation is observed for nonradiative decay in the imido compounds as a group, but a corresponding correlation of radiative rates with emission energy is not observed when aryl and alkyl imidos are compared, evidence of electronic perturbation by the aryl substituent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...