Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 19097, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351982

RESUMEN

X-ray computed tomography (CT) is a commercially established modality for imaging large objects like passenger luggage. CT can provide the density and the effective atomic number, which is not always sufficient to identify threats like explosives and narcotics, since they can have a similar composition to benign plastics, glass, or light metals. In these cases, X-ray diffraction (XRD) may be better suited to distinguish the threats. Unfortunately, the diffracted photon flux is typically much weaker than the transmitted one. Measurement of quality XRD data is therefore slower compared to CT, which is an economic challenge for potential customers like airports. In this article we numerically analyze a novel low-cost scanner design which captures CT and XRD signals simultaneously, and uses the least possible collimation to maximize the flux. To simulate a realistic instrument, we propose a forward model that includes the resolution-limiting effects of the polychromatic spectrum, the detector, and all the finite-size geometric factors. We then show how to reconstruct XRD patterns from a large phantom with multiple diffracting objects. We include a reasonable amount of photon counting noise (Poisson statistics), as well as measurement bias (incoherent scattering). Our XRD reconstruction adds material-specific information, albeit at a low resolution, to the already existing CT image, thus improving threat detection. Our theoretical model is implemented in GPU (Graphics Processing Unit) accelerated software which can be used to further optimize scanner designs for applications in security, healthcare, and manufacturing quality control.


Asunto(s)
Programas Informáticos , Tomografía Computarizada por Rayos X , Difracción de Rayos X , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Fotones , Procesamiento de Imagen Asistido por Computador/métodos
2.
Soft Matter ; 15(3): 371-380, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30519692

RESUMEN

Entangled polymers are deformed by a strong shear flow. The shape of the polymer, called the form factor, is measured by small angle neutron scattering. However, the real-space molecular structure is not directly available from the reciprocal-space data, due to the phase problem. Instead, the data has to be fitted with a theoretical model of the molecule. We approximate the unknown structure using piecewise straight segments, from which we derive an analytical form factor. We fit it to our data on a semi-dilute entangled polystyrene solution under in situ shear flow. The character of the deformation is shown to lie between that of a single ideal chain (viscous) and a cross-linked network (elastic rubber). Furthermore, we use the fitted structure to estimate the mechanical stress, and find a fairly good agreement with rheology literature.

3.
J Chem Phys ; 149(7): 074901, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134722

RESUMEN

The non-linear response of entangled polymers to shear flow is complicated. Its current understanding is framed mainly as a rheological description in terms of the complex viscosity. However, the full picture requires an assessment of the dynamical structure of individual polymer chains which give rise to the macroscopic observables. Here we shed new light on this problem, using a computer simulation based on a blob model, extended to describe shear flow in polymer melts and semi-dilute solutions. We examine the diffusion and the intermediate scattering spectra during a steady shear flow. The relaxation dynamics are found to speed up along the flow direction, but slow down along the shear gradient direction. The third axis, vorticity, shows a slowdown at the short scale of a tube, but reaches a net speedup at the large scale of the chain radius of gyration.

4.
J Phys Condens Matter ; 30(16): 165901, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29521272

RESUMEN

Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.

5.
J Chem Phys ; 145(12): 124113, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27782661

RESUMEN

We present a computer simulation of entangled polymer solutions at equilibrium. The chains repel each other via a soft Gaussian potential, appropriate for semi-dilute solutions at the scale of a correlation blob. The key innovation to suppress chain crossings is to use a pseudo-continuous model of a backbone which effectively leaves no gaps between consecutive points on the chain, unlike the usual bead-and-spring model. Our algorithm is sufficiently fast to observe the entangled regime using a standard desktop computer. The simulated structural and mechanical correlations are in fair agreement with the expected predictions for a semi-dilute solution of entangled chains.

6.
Phys Rev E ; 94(2-1): 021302, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27627239

RESUMEN

Particle simulations confined by sharp walls usually develop an oscillatory density profile. For some applications, most notably soft matter liquids, this behavior is often unrealistic and one expects a monotonic density climb instead. To reconcile simulations with experiments, we propose mirror-and-shift boundary conditions where each interface is mapped to a distant part of itself. The main result is that the particle density increases almost monotonically from zero to bulk, over a short distance of about one particle diameter. The method is applied to simulate a polymer brush in explicit solvent, grafted on a flat silicon substrate. The simulated density profile agrees favorably with neutron reflectometry measurements and self-consistent field theory results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...