Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Nanotechnology ; 35(5)2023 Nov 17.
Article En | MEDLINE | ID: mdl-37879328

Distributed Bragg Reflectors (DBR) are well-established photonic structures that are used in many photonic applications. However, most of the DBRs are based on different materials or require post-process etching which can hinder integration with other components in the final photonic structure. Here, we demonstrate the fabrication of DBR structures consisting only of undoped boron nitride (BN) layers with high refractive index contrast by using metal-organic chemical vapor deposition (MOCVD). This has been achieved in a single process, without the need for any post-process etching. The difference in the refractive index of the component BN layers stems from different degrees of porosity of the individual BN layers, which is a direct result of a different growth temperature. The fabricated DBR structures consist of 15.5 pairs of BN layers and exhibit a reflectance of 87 ± 1% at the maximum. The wavelength of maximum reflectance can be tuned from 500 nm up to the infrared region (IR), by simply adjusting the growth periods of subsequent BN layers. We also demonstrate that the fabricated structures can be used to create an optical microcavity. The fabricated DBRs are very promising candidates for future applications, for example in combination with single-photon emitters in h-BN, which could allow the building of a cavity-based all-BN single-photon source.

2.
Molecules ; 27(22)2022 Nov 14.
Article En | MEDLINE | ID: mdl-36431947

High-quality perovskite film with large grains and therefore reduced grain boundaries plays a significant role in improving the power conversion efficiency (PCE) and ensuring good long-term stability of the perovskite solar cells. In this work, we found that adding camphorsulfonic acid (CSA), a Lewis base, to the perovskite solution results in the crystallization of larger perovskite grains. By varying the concentration of CSA, we found that the optimal concentration of the additive is 1 mg/mL, which leads to an 20% increase in PCE of the cells compared to the reference CSA-free cell. Interestingly, we observed that the PCE of cells with an excess of CSA was initially poor, but may increase significantly over time, possibly due to CSA migration to the hole-transporting layer, leading to an improvement in its conductivity.

3.
Materials (Basel) ; 15(19)2022 Oct 05.
Article En | MEDLINE | ID: mdl-36234249

Fullerene derivatives offer great scope for modification of the basic molecule, often called a buckyball. In recent years, they have been the subject of numerous studies, in particular in terms of their applications, including in solar cells. Here, the properties of four recently synthesized fullerene C60 derivatives were examined regarding their optical properties and the efficiency of the charge transfer process, both in fullerene derivatives themselves and in their heterojunctions with poly (3-hexylthiophene). Optical absorption, electron spin resonance (ESR), and time-resolved photoluminescence (TRPL) techniques were applied to study the synthesized molecules. It was shown that the absorption processes in fullerene derivatives are dominated by absorption of the fullerene cage and do not significantly depend on the type of the derivative. It was also found by ESR and TRPL studies that asymmetrical, dipole-like derivatives exhibit stronger light-induced charge transfer properties than their symmetrical counterparts. The observed inhomogeneous broadening of the ESR lines indicated a large disorder of all polymer-fullerene derivative blends. The density functional theory was applied to explain the results of the optical absorption experiments.

4.
Materials (Basel) ; 15(8)2022 Apr 08.
Article En | MEDLINE | ID: mdl-35454453

In this paper, we present a comparative analysis of the optical properties of non-polar and polar GaN/AlGaN multi-quantum well (MQW) structures by time-resolved photoluminescence (TRPL) and pressure-dependent studies. The lack of internal electric fields across the non-polar structures results in an improved electron and hole wavefunction overlap with respect to the polar structures. Therefore, the radiative recombination presents shorter decay times, independent of the well width. On the contrary, the presence of electric fields in the polar structures reduces the emission energy and the wavefunction overlap, which leads to a strong decrease in the recombination rate when increasing the well width. Taking into account the different energy dependences of radiative recombination in non-polar and polar structures of the same geometry, and assuming that non-radiative processes are energy independent, we attempted to explain the 'S-shape' behavior of the PL energy observed in polar GaN/AlGaN QWs, and its absence in non-polar structures. This approach has been applied previously to InGaN/GaN structures, showing that the interplay of radiative and non-radiative recombination processes can justify the 'S-shape' in polar InGaN/GaN MQWs. Our results show that the differences in the energy dependences of radiative and non-radiative recombination processes cannot explain the 'S-shape' behavior by itself, and localization effects due to the QW width fluctuation are also important. Additionally, the influence of the electric field on the pressure behavior of the investigated structures was studied, revealing different pressure dependences of the PL energy in non-polar and polar MQWs. Non-polar MQWs generally follow the pressure dependence of the GaN bandgap. In contrast, the pressure coefficients of the PL energy in polar QWs are highly reduced with respect to those of the bulk GaN, which is due to the hydrostatic-pressure-induced increase in the piezoelectric field in quantum structures and the nonlinear behavior of the piezoelectric constant.

5.
Molecules ; 27(3)2022 Jan 28.
Article En | MEDLINE | ID: mdl-35164178

New donor-acceptor conjugated alternating or random copolymers containing 1-methyl-2-phenylbenzimidazole and benzothiadiazole (P1), diketopyrrolopyrrole (P4), or both acceptors (P2) are reported. The specific feature of these copolymers is the presence of a permanent dipole-bearing moiety (1-methyl-2-phenyl imidazole (MPI)) fused with the 1,4-phenylene ring of the polymer main chain. For comparative reasons, polymers of the same main chain but deprived of the MPI group were prepared, namely, P5 with diketopyrrolopyrrole and P3 with both acceptors. The presence of the permanent dipole results in an increase of the optical band gap from 1.51 eV in P3 to 1.57 eV in P2 and from 1.49 eV in P5 to 1.55 eV in P4. It also has a measurable effect on the ionization potential (IP) and electrochemical band gap (EgCV), leading to their decrease from 5.00 and 1.83 eV in P3 to 4.92 and 1.79 eV in P2 as well as from 5.09 and 1.87 eV in P5 to 4.94 and 1.81 eV in P4. Moreover, the presence of permanent dipole lowers the exciton binding energy (Eb) from 0.32 eV in P3 to 0.22 eV in P2 and from 0.38 eV in P5 to 0.26 eV in P4. These dipole-induced changes in the polymer properties should be beneficial for photovoltaic applications. Bulk heterojunction solar cells fabricated from these polymers (with PC71BM acceptor) show low series resistance (rs), indicating good electrical transport properties. The measured power conversion efficiency (PCE) of 0.54% is limited by the unfavorable morphology of the active layer.

6.
Molecules ; 26(6)2021 Mar 12.
Article En | MEDLINE | ID: mdl-33809087

In the present work, we report the successful synthesis and characterization of six (two new) fullerene mono- and di-pyrene derivatives based on C60 and C70 fullerenes. The synthesized compounds were characterized by spectral methods (ESI-MS, 1H-NMR, 13C-NMR, UV-Vis, FT-IR, photoluminescence and photocurrent spectroscopy). The energy of HOMO and LUMO levels and the band gaps were determined from cyclic voltammetry and compared with the theoretical values calculated according to the DFT/B3LYP/6-31G(d) and DFT/PBE/6-311G(d,p) approach for fully optimized molecular structures at the DFT/B3LYP/6-31G(d) level. Efficiency of solar cells made of PTB7: C60 and C70 fullerene pyrene derivatives were analyzed based on the determined energy levels of the HOMO and LUMO orbitals of the derivatives as well as the extensive spectral results of fullerene derivatives and their mixtures with PTB7. As a result, we found that the electronic and spectral properties, on which the efficiency of a photovoltaic cell is believed to depend, slightly changes with the number and type of pyrene substituents on the fullerene core. The efficiency of constructed solar cells largely depends on the homogeneity of the photovoltaic layer, which, in turn, is a derivative of the solubility of fullerene derivatives in the solvent used to apply these layers by spincoating.

7.
Materials (Basel) ; 13(21)2020 Oct 24.
Article En | MEDLINE | ID: mdl-33114337

We demonstrate that a GaN nanowire array can be used for efficient charge transfer between the organic photovoltaic layer and silicon in a Si/GaN/P3HT:PC71BM inverted hybrid heterostructure. The band alignment of such a material combination is favorable to facilitate exciton dissociation, carrier separation and electron transport into Si. The ordered nature of the GaN array helps to mitigate the intrinsic performance limitations of the organic active layer. The dependence of photovoltaic performance enhancement on the morphology of the nanostructure with nanowire diameters 30, 50, 60, 100 and 150 nm was studied in detail. The short circuit current was enhanced by a factor of 4.25, while an open circuit voltage increase by 0.32 volts was achieved compared to similar planar layers.

8.
Nanoscale ; 12(31): 16535-16542, 2020 Aug 13.
Article En | MEDLINE | ID: mdl-32790820

Thin layers of transition metal dichalcogenides have been intensively studied over the last few years due to their novel physical phenomena and potential applications. One of the biggest problems in laboratory handling and moving on to application-ready devices lies in the high sensitivity of their physicochemical properties to ambient conditions. We demonstrate that novel, in situ capping with an ultra-thin, aluminum film efficiently protects thin MoTe2 layers stabilizing their electronic transport properties after exposure to ambient conditions. The experiments have been performed on bilayers of 2H-MoTe2 grown by molecular beam epitaxy on large area GaAs(111)B substrates. The crystal structure, surface morphology and thickness of the deposited MoTe2 layers have been precisely controlled in situ with a reflection high energy electron diffraction system. As evidenced by high resolution transmission electron microscopy, MoTe2 films exhibit perfect arrangement in the 2H phase and the epitaxial relation to the GaAs(111)B substrates. After the growth, the samples were in situ capped with a thin (3 nm) film of aluminum, which oxidizes after exposure to ambient conditions. This oxide serves as a protective layer to the underlying MoTe2. Resistivity measurements of the MoTe2 layers with and without the cap, exposed to low vacuum, nitrogen and air, revealed a huge difference in their stability. The significant rise of resistance is observed for the unprotected sample while the resistance of the protected one is constant. Wide range temperature resistivity studies showed that charge transport in MoTe2 is realized by hopping with an anomalous hopping exponent of x ≃ 0.66, reported also previously for ultra-thin, metallic layers.

9.
RSC Adv ; 10(73): 44958-44972, 2020 Dec 17.
Article En | MEDLINE | ID: mdl-35516284

A new unsymmetrical imine with four thiophene rings was synthesized in a one-step reaction, starting from the commercially available and relatively inexpensive reagents. The obtained imine in the form of thin films exhibited photoluminescence properties in the 1.8-2.4 eV energy range and a photoluminescence lifetime of about 0.3 ns. The HOMO and LUMO levels of the imine determined by cyclic voltammetry were at about -5.19 eV and -3.05 eV, respectively. The density functional theory was applied to calculate the geometric and electronic structure of the imine. The UV-Vis spectra showed that the absorption range of the imine overlaps with that of PC70BM, and the absorption peak at the maximum of the imine at 424 nm is located between the two maxima at 404 nm and 461 nm of the fullerene derivative. The electron acceptor and donor activity of the imine was tested in the solar cell architecture: glass/ITO/PEDOT:PSS/active layer/In/Al. The best photovoltaic parameters, with very good reproducibility for each 8 pixels in the cell, were found for the active layer based on ternary mixture PTB7:PC70BM:imine at a weight ratio 8 : 13 : 1, with the power conversion efficiency of about 4%. The external quantum efficiency of devices with the imine was found to be about 40% at 3.3 eV. The thermal imaging together with the recorded current response at increasing potential showed that the presence of imine in the composition has a beneficial impact in terms of current flow stability at temperatures above 200 °C, compared to two component layers with the same imine as an additive.

10.
Plasmonics ; 8(2): 913-919, 2013 Jun.
Article En | MEDLINE | ID: mdl-23662095

A simple fabrication method of silver (Ag) nanoislands on ZnO films is presented. Continuous wave and time-resolved photoluminescence and transmission are employed to investigate modifications of visible and UV emissions of ZnO brought about by coupling to localized surface plasmons residing on Ag nanoislands. The size of the nanoislands, determining their absorption and scattering efficiencies, is found to be an important factor governing plasmonic modification of optical response of ZnO films. The presence of the Ag nanoislands of appropriate dimensions causes a strong (threefold) increase in emission intensity and up to 1.5 times faster recombination. The experimental results are successfully described by model calculations within the Mie theory.

...