Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1862(3): 148347, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253667

RESUMEN

Derivatives of poly(styrene-co-maleic acid) (pSMA), have recently emerged as effective reagents for extracting membrane protein complexes from biological membranes. Despite recent progress in using SMAs to study artificial and bacterial membranes, very few reports have addressed their use in studying the highly abundant and well characterized thylakoid membranes. Recently, we tested the ability of twelve commercially available SMA copolymers with different physicochemical properties to extract membrane protein complexes (MPCs) from spinach thylakoid membrane. Based on the efficacy of both protein and chlorophyll extraction, we have found five highly efficient SMA copolymers: SMA® 1440, XIRAN® 25010, XIRAN® 30010, SMA® 17352, and SMA® PRO 10235, that show promise in extracting MPCs from chloroplast thylakoids. To further advance the application of these polymers for studying biomembrane organization, we have examined the composition of thylakoid supramolecular protein complexes extracted by the five SMA polymers mentioned above. Two commonly studied plants, spinach (Spinacia oleracea) and pea (Pisum sativum), were used for extraction as model biomembranes. We found that the pSMAs differentially extract protein complexes from spinach and pea thylakoids. Based on their differential activity, which correlates with the polymer chemical structure, pSMAs can be divided into two groups: unfunctionalized polymers and ester derivatives.


Asunto(s)
Maleatos/química , Proteínas de la Membrana/aislamiento & purificación , Pisum sativum/química , Proteínas de Plantas/aislamiento & purificación , Poliestirenos/química , Spinacia oleracea/química , Tilacoides/química , Proteínas de la Membrana/química , Proteínas de Plantas/química
2.
Langmuir ; 36(14): 3970-3980, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32207953

RESUMEN

Styrene-maleic acid (SMA) copolymers have recently gained attention for their ability to facilitate the detergent-free solubilization of membrane protein complexes and their native boundary lipids into polymer-encapsulated, nanosized lipid particles, referred to as SMALPs. However, the interfacial interactions between SMA and lipids, which dictate the mechanism, efficiency, and selectivity of lipid and membrane protein extraction, are barely understood. Our recent finding has shown that SMA 1440, a chemical derivative of the SMA family with a functionalized butoxyethanol group, was most active in galactolipid-rich membranes, as opposed to phospholipid membranes. In the present work, we have performed X-ray reflectometry (XRR) and neutron reflectometry (NR) on the lipid monolayers at the liquid-air interface followed by the SMA copolymer adsorption. XRR and Langmuir Π-A isotherms captured the fluidifying effect of galactolipids, which allowed SMA copolymers to infiltrate easily into the lipid membranes. NR results revealed the detailed structural arrangement of SMA 1440 copolymers within the membranes and highlighted the partition of butoxyethanol group into the lipid tail region. This work allows us to propose a possible mechanism for the membrane solubilization by SMA.

3.
Int J Hyperthermia ; 36(1): 687-701, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31340687

RESUMEN

Background: Magnetic nanoparticles (MNPs) generate heat when exposed to an alternating magnetic field. Consequently, MNPs are used for magnetic fluid hyperthermia (MFH) for cancer treatment, and have been shown to increase the efficacy of chemotherapy and/or radiation treatment in clinical trials. A downfall of current MFH treatment is the inability to deliver sufficient heat to the tumor due to: insufficient amounts of MNPs, unequal distribution of MNPs throughout the tumor, or heat loss to the surrounding environment. Objective: In this study, the objective was to identify MNPs with high heating efficiencies quantified by their specific absorption rate (SAR). Methods: A panel of 31 commercially available MNPs were evaluated for SAR in two different AMFs. Additionally, particle properties including iron content, hydrodynamic diameter, core diameter, magnetic diameter, magnetically dead layer thickness, and saturation mass magnetization were investigated. Results: High SAR MNPs were identified. For SAR calculations, the initial slope, corrected slope, and Box-Lucas methods were used and validated using a graphical residual analysis, and the Box-Lucas method was shown to be the most accurate. Other particle properties were identified and examined for correlations with SAR values. Positive correlations of particle properties with SAR were found, including a strong correlation for the magnetically dead layer thickness. Conclusions: This work identified high SAR MNPs for hyperthermia, and provides insight into properties which correlate with SAR which will be valuable for synthesis of next-generation MNPs. SAR calculation methods must be standardized, and this work provides an in-depth analysis of common calculation methods.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Campos Magnéticos , Fenómenos Magnéticos , Nanopartículas de Magnetita/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...