Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Epilepsy Behav ; 150: 109572, 2024 Jan.
Article En | MEDLINE | ID: mdl-38070406

RATIONALE: Seizure induction techniques are used in the epilepsy monitoring unit (EMU) to increase diagnostic yield and reduce length of stay. There are insufficient data on the efficacy of alcohol as an induction technique. METHODS: We performed a retrospective cohort study using six years of EMU data at our institution. We compared cases who received alcohol for seizure induction to matched controls who did not. The groups were matched on the following variables: age, reason for admission, length of stay, number of antiseizure medications (ASM) at admission, whether ASMs were tapered during admission, and presence of interictal epileptiform discharges. We used both propensity score and exact matching strategies. We compared the likelihood of epileptic seizures and nonepileptic events in cases versus controls using Kaplan-Meier time-to-event analysis, as well as odds ratios for these outcomes occurring at any time during the admission. RESULTS: We analyzed 256 cases who received alcohol (median dose 2.5 standard drinks) and 256 propensity score-matched controls. Cases who received alcohol were no more likely than controls to have an epileptic seizure (X2(1) = 0.01, p = 0.93) or nonepileptic event (X2(1) = 2.1, p = 0.14) in the first 48 h after alcohol administration. For the admission overall, cases were no more likely to have an epileptic seizure (OR 0.89, 95 % CI 0.61-1.28, p = 0.58), nonepileptic event (OR 0.97, CI 0.62-1.53, p = 1.00), nor require rescue benzodiazepine (OR 0.63, CI 0.35-1.12, p = 0.15). Stratified analyses revealed no increased risk of epileptic seizure in any subgroups. Sensitivity analysis using exact matching showed that results were robust to matching strategy. CONCLUSIONS: Alcohol was not an effective induction technique in the EMU. This finding has implications for counseling patients with epilepsy about the risks of drinking alcohol in moderation in their daily lives.


Electroencephalography , Epilepsy , Humans , Retrospective Studies , Electroencephalography/methods , Seizures/psychology , Epilepsy/complications , Epilepsy/diagnosis , Epilepsy/epidemiology , Monitoring, Physiologic , Ethanol/therapeutic use
2.
J Virol ; 89(6): 3380-95, 2015 Mar.
Article En | MEDLINE | ID: mdl-25589637

UNLABELLED: Recombinant trimeric mimics of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) spike should expose as many epitopes as possible for broadly neutralizing antibodies (bNAbs) but few, if any, for nonneutralizing antibodies (non-NAbs). Soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A strain BG505 approach this ideal and are therefore plausible vaccine candidates. Here, we report on the production and in vitro properties of a new SOSIP.664 trimer derived from a subtype B env gene, B41, including how to make this protein in low-serum media without proteolytic damage (clipping) to the V3 region. We also show that nonclipped trimers can be purified successfully via a positive-selection affinity column using the bNAb PGT145, which recognizes a quaternary structure-dependent epitope at the trimer apex. Negative-stain electron microscopy imaging shows that the purified, nonclipped, native-like B41 SOSIP.664 trimers contain two subpopulations, which we propose represent an equilibrium between the fully closed and a more open conformation. The latter is different from the fully open, CD4 receptor-bound conformation and may represent an intermediate state of the trimer. This new subtype B trimer adds to the repertoire of native-like Env proteins that are suitable for immunogenicity and structural studies. IMPORTANCE: The cleaved, trimeric envelope protein complex is the only neutralizing antibody target on the HIV-1 surface. Many vaccine strategies are based on inducing neutralizing antibodies. For HIV-1, one approach involves using recombinant, soluble protein mimics of the native trimer. At present, the only reliable way to make native-like, soluble trimers in practical amounts is via the introduction of specific sequence changes that confer stability on the cleaved form of Env. The resulting proteins are known as SOSIP.664 gp140 trimers, and the current paradigm is based on the BG505 subtype A env gene. Here, we describe the production and characterization of a SOSIP.664 protein derived from a subtype B gene (B41), together with a simple, one-step method to purify native-like trimers by affinity chromatography with a trimer-specific bNAb, PGT145. The resulting trimers will be useful for structural and immunogenicity experiments aimed at devising ways to make an effective HIV-1 vaccine.


HIV-1/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , AIDS Vaccines/chemistry , AIDS Vaccines/genetics , AIDS Vaccines/immunology , AIDS Vaccines/isolation & purification , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , HIV-1/immunology , Humans , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/isolation & purification
3.
Retrovirology ; 11: 33, 2014 Apr 25.
Article En | MEDLINE | ID: mdl-24767177

BACKGROUND: Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate amounts at an acceptable quality. Accomplishing such tasks by transient transfection is likely to be challenging. The traditional way to express recombinant proteins in large amounts is via a permanent cell line, usually of mammalian origin. Making cell lines that produce BG505 SOSIP.664 trimers requires the co-expression of the Furin protease to ensure that the cleavage site between the gp120 and gp41 subunits is fully utilized. RESULTS: We designed a vector capable of expressing Env and Furin, and used it to create Stable 293 T and CHO Flp-In™ cell lines through site-specific recombination. Both lines produce high quality, cleaved trimers at yields of up to 12-15 mg per 1 × 109 cells. Trimer expression at such levels was maintained for up to 30 days (10 passages) after initial seeding and was consistently superior to what could be achieved by transient transfection. Electron microscopy studies confirm that the purified trimers have the same native-like appearance as those derived by transient transfection and used to generate high-resolution structures. They also have appropriate antigenic properties, including the presentation of the quaternary epitope for the broadly neutralizing antibody PGT145. CONCLUSIONS: The BG505 SOSIP.664 trimer-expressing cell lines yield proteins of an appropriate quality for structural studies and animal immunogenicity experiments. The methodology is suitable for making similar lines under Good Manufacturing Practice conditions, to produce trimers for human clinical trials. Moreover, any env gene can be incorporated into this vector system, allowing the manufacture of SOSIP trimers from multiple genotypes, either by transient transfection or from stable cell lines.


Antigens, Viral/genetics , Gene Expression/genetics , Glycoproteins/genetics , HIV-1/metabolism , Vaccines/genetics , env Gene Products, Human Immunodeficiency Virus/biosynthesis , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , CHO Cells , Cell Line , Cricetulus , Furin/genetics , Furin/immunology , Gene Expression/immunology , Glycoproteins/immunology , HEK293 Cells , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Envelope Protein gp120/biosynthesis , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/biosynthesis , HIV Envelope Protein gp41/genetics , HIV-1/genetics , HIV-1/immunology , Humans , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccines/biosynthesis , Vaccines/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
4.
Proc Natl Acad Sci U S A ; 110(45): 18256-61, 2013 Nov 05.
Article En | MEDLINE | ID: mdl-24145402

We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120-gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120-gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated.


HIV-1/chemistry , Protein Conformation , Protein Engineering/methods , Protein Subunits/metabolism , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/chemical synthesis , AIDS Vaccines/metabolism , Antibodies, Monoclonal , Electrophoresis, Polyacrylamide Gel , Microscopy, Electron , Mutation, Missense/genetics , Protein Multimerization/genetics , Protein Subunits/genetics , Rosaniline Dyes , env Gene Products, Human Immunodeficiency Virus/ultrastructure
5.
PLoS Pathog ; 9(9): e1003618, 2013 Sep.
Article En | MEDLINE | ID: mdl-24068931

A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.


Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Epitopes , HIV Antibodies/metabolism , Immunoglobulin Fab Fragments/metabolism , env Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , AIDS Vaccines/therapeutic use , Amino Acid Substitution , Antibody Affinity , Antibody Specificity , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Humans , Molecular Weight , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Aggregates , Protein Stability , Recombinant Fusion Proteins/chemistry , Solubility , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
6.
J Virol ; 87(17): 9873-85, 2013 Sep.
Article En | MEDLINE | ID: mdl-23824824

We describe methods to improve the properties of soluble, cleaved gp140 trimers of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) for use in structural studies and as immunogens. In the absence of nonionic detergents, gp140 of the KNH1144 genotype, terminating at residue 681 in gp41 (SOSIP.681), has a tendency to form higher-order complexes or aggregates, which is particularly undesirable for structure-based research. We found that this aggregation in the absence of detergent does not involve the V1, V2, or V3 variable regions of gp120. Moreover, we observed that detergent forms micelles around the membrane-proximal external region (MPER) of the SOSIP.681 gp140 trimers, whereas deletion of most of the MPER residues by terminating the gp140 at residue 664 (SOSIP.664) prevented the aggregation that otherwise occurs in SOSIP.681 in the absence of detergent. Although the MPER can contribute to trimer formation, truncation of most of it only modestly reduced trimerization and lacked global adverse effects on antigenicity. Thus, the MPER deletion minimally influenced the kinetics of the binding of soluble CD4 and a CD4-binding site antibody to immobilized trimers, as detected by surface plasmon resonance. Furthermore, the MPER deletion did not alter the overall three-dimensional structure of the trimers, as viewed by negative-stain electron microscopy. Homogeneous and aggregate-free MPER-truncated SOSIP Env trimers are therefore useful for immunogenicity and structural studies.


HIV-1/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Sequence , Antibodies, Monoclonal , Antibodies, Neutralizing , Binding Sites , CD4 Antigens/chemistry , Detergents , HEK293 Cells , HIV Antibodies , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/immunology , HIV-1/genetics , HIV-1/immunology , Humans , Microscopy, Electron , Molecular Sequence Data , Protein Multimerization , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Sequence Deletion , Solubility , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
...