Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1082094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324660

RESUMEN

Tomato bacterial canker caused by Clavibacter michiganensis (Cm) is considered to be one of the most destructive bacterial diseases of tomato. To date, no resistance to the pathogen has been identified. While several molecular studies have identified (Cm) bacterial factors involved in disease development, the plant genes and mechanisms associated with susceptibility of tomato to the bacterium remain largely unknown. Here, we show for the first time that tomato gene SlWAT1 is a susceptibility gene to Cm. We inactivated the gene SlWAT1 through RNAi and CRISPR/Cas9 to study changes in tomato susceptibility to Cm. Furthermore, we analysed the role of the gene in the molecular interaction with the pathogen. Our findings demonstrate that SlWAT1 functions as an S gene to genetically diverse Cm strains. Inactivation of SlWAT1 reduced free auxin contents and ethylene synthesis in tomato stems and suppressed the expression of specific bacterial virulence factors. However, CRISPR/Cas9 slwat1 mutants exhibited severe growth defects. The observed reduced susceptibility is possibly a result of downregulation of bacterial virulence factors and reduced auxin contents in transgenic plants. This shows that inactivation of an S gene may affect the expression of bacterial virulence factors.

2.
Trends Plant Sci ; 27(1): 69-79, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34400073

RESUMEN

Plants have evolved complex defence mechanisms to avoid invasion of potential pathogens. Despite this, adapted pathogens deploy effector proteins to manipulate host susceptibility (S) genes, rendering plant defences ineffective. The identification and mutation of plant S genes exploited by bacterial pathogens are important for the generation of crops with durable and broad-spectrum resistance. Application of mutant S genes in the breeding of resistant crops is limited because of potential pleiotropy. New genome editing techniques open up new possibilities for the modification of S genes. In this review, we focus on S genes manipulated by bacteria and propose ways for their identification and precise modification. Finally, we propose that genes coding for transporter proteins represent a new group of S genes.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad , Bacterias/genética , Productos Agrícolas/genética , Resistencia a la Enfermedad/genética , Genoma de Planta , Fitomejoramiento , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética
3.
BMC Plant Biol ; 20(1): 284, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32560695

RESUMEN

BACKGROUND: The development of CRISPR/Cas9 technology has facilitated targeted mutagenesis in an efficient and precise way. Previously, RNAi silencing of the susceptibility (S) gene PowderyMildewResistance 4 (PMR4) in tomato has been shown to enhance resistance against the powdery mildew pathogen Oidium neolycopersici (On). RESULTS: To study whether full knock-out of the tomato PMR4 gene would result in a higher level of resistance than in the RNAi-silenced transgenic plants we generated tomato PMR4 CRISPR mutants. We used a CRISPR/Cas9 construct containing four single-guide RNAs (sgRNAs) targeting the tomato PMR4 gene to increase the possibility of large deletions in the mutants. After PCR-based selection and sequencing of transformants, we identified five different mutation events, including deletions from 4 to 900-bp, a 1-bp insertion and a 892-bp inversion. These mutants all showed reduced susceptibility to On based on visual scoring of disease symptoms and quantification of relative fungal biomass. Histological observations revealed a significantly higher occurrence of hypersensitive response-like cell death at sites of fungal infection in the pmr4 mutants compared to wild-type plants. Both haustorial formation and hyphal growth were diminished but not completely inhibited in the mutants. CONCLUSION: CRISPR/Cas-9 targeted mutagenesis of the tomato PMR4 gene resulted in mutants with reduced but not complete loss of susceptibility to the PM pathogen On. Our study demonstrates the efficiency and versatility of the CRISPR/Cas9 system as a powerful tool to study and characterize S-genes by generating different types of mutations.


Asunto(s)
Glucosiltransferasas/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/crecimiento & desarrollo , Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Glucosiltransferasas/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/microbiología , Mutagénesis , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...