Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Hum Genome Var ; 11(1): 14, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38548731

RESUMEN

TNNI3 is a gene that causes hypertrophic cardiomyopathy (HCM). A 14-year-old girl who was diagnosed with nonobstructive HCM presented with cardiopulmonary arrest due to ventricular fibrillation. Genetic testing revealed a novel de novo heterozygous missense variant in TNNI3, NM_000363.5:c.583A>T (p.Ile195Phe), which was determined to be the pathogenic variant. The patient exhibited progressive myocardial fibrosis, left ventricular remodeling, and life-threatening arrhythmias. Genetic testing within families is useful for risk stratification in pediatric HCM patients.

2.
J Cardiovasc Magn Reson ; 25(1): 53, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759307

RESUMEN

BACKGROUND: Ischemia of the hypertrophied myocardium due to microvascular dysfunction is related to a worse prognosis in hypertrophic cardiomyopathy (HCM). Stress and rest T1 mapping without contrast agents can be used to assess myocardial blood flow. Herein, we evaluated the potential of non-contrast stress T1 mapping in assessing myocardial injury in patients with HCM. METHODS: Forty-five consecutive subjects (31 HCM patients and 14 control subjects) underwent cardiac magnetic resonance (CMR) at 3T, including cine imaging, T1 mapping at rest and during adenosine triphosphate (ATP) stress, late gadolinium enhancement (LGE), and phase-contrast (PC) cine imaging of coronary sinus flow at rest and during stress to assess coronary flow reserve (CFR). PC cine imaging was performed on 25 subjects (17 patients with HCM and 8 control subjects). Native T1 values at rest and during stress were measured using the 16-segment model, and T1 reactivity was defined as the change in T1 values from rest to stress. RESULTS: ATP stress induced a significant increase in native T1 values in both the HCM and control groups (HCM: p < 0.001, control: p = 0.002). T1 reactivity in the HCM group was significantly lower than that in the control group (4.2 ± 0.3% vs. 5.6 ± 0.5%, p = 0.044). On univariate analysis, T1 reactivity correlated with native T1 values at rest, left ventricular mass index, and CFR. Multiple linear regression analysis demonstrated that only CFR was independently correlated with T1 reactivity (ß = 0.449; 95% confidence interval, 0.048-0.932; p = 0.032). Furthermore, segmental analysis showed decreased T1 reactivity in the hypertrophied myocardium and the non-hypertrophied myocardium with LGE in the HCM group. CONCLUSIONS: T1 reactivity was lower in the hypertrophied myocardium and LGE-positive myocardium compared to non-injured myocardium. Non-contrast stress T1 mapping is a promising CMR method for assessing myocardial injury in patients with HCM. Trial registration Retrospectively registered.


Asunto(s)
Cardiomiopatía Hipertrófica , Medios de Contraste , Humanos , Gadolinio , Valor Predictivo de las Pruebas , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Adenosina Trifosfato
4.
Am J Cardiol ; 174: 34-39, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35379453

RESUMEN

Single-photon emission computed tomography (SPECT) and computed tomography coronary angiography (CTCA) are usually performed independently in patients with suspected coronary artery disease. We assessed the hypothesis that hybrid SPECT/CTCA imaging results in higher diagnostic accuracy than either method alone, particularly in cases presenting with high levels of coronary calcification. A total of 243 major coronary vessels in 81 patients with known or suspected coronary artery disease were screened using SPECT with semiconductor detectors and CTCA with 256-detector row computed tomography. Patients who were diagnosed with myocardial ischemia underwent coronary angiography. Coronary angiography results were defined as positive for stenosis when the stenosis diameter was >70% or fractional flow reserve was <0.8. These data were then compared with a fused image of the SPECT and CTCA datasets generated using a dedicated workstation. To detect significant coronary artery stenosis, the respective sensitivity, specificity, and accuracy were 73%, 61%, and 67% with SPECT alone, 96%, 44%, and 67% with CTCA alone, and 95%, 75%, and 84% with hybrid imaging. Moreover, hybrid imaging allowed the accurate diagnosis of 47 vessels with severe calcification that CTCA alone could not evaluate correctly. Hybrid imaging shows greater diagnostic accuracy than single-modality evaluation through more comprehensive information on potential coronary stenosis and its hemodynamic significance.


Asunto(s)
Calcinosis , Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Imagen de Perfusión Miocárdica , Constricción Patológica , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Humanos , Imagen Multimodal , Imagen de Perfusión Miocárdica/métodos , Sensibilidad y Especificidad , Tomografía Computarizada de Emisión de Fotón Único/métodos
5.
Hum Genome Var ; 9(1): 6, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181673

RESUMEN

RBM20 is a disease-causing gene associated with dilated cardiomyopathy (DCM). The proband presented with the dilated phase of hypertrophic cardiomyopathy (HCM), and the mother also suffered from HCM. A missense variant of RBM20, p.Arg636His, previously reported as pathogenic in several families with DCM, was found in both the proband and the mother. Therefore, RBM20 p.Arg636His could be the causative variant for this familial HCM, and RBM20 might be a novel causative gene for HCM.

6.
Mol Imaging Biol ; 24(5): 692-699, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34580810

RESUMEN

PURPOSE: Macrophages contribute to the progression of vascular inflammation, making them useful targets for imaging and treatment of vascular diseases. Gold nanoparticles (GNPs) are useful as computed tomography (CT) contrast agents and light absorbers in photothermal therapy. In this study, we aimed to assess the viability of macrophages incubated with GNPs after near-infrared (NIR) laser light exposure and to evaluate the utility of intravenously injected GNPs for in vivo imaging of vascular inflammation in mice using micro-CT. PROCEDURES: Mouse macrophage cells (RAW 264.7) were incubated with GNPs and assessed for GNP cellular uptake and cell viability before and after exposure to NIR laser light. For in vivo imaging, macrophage-rich atherosclerotic lesions were induced by carotid ligation in hyperlipidemic and diabetic FVB mice (n = 9). Abdominal aortic aneurysms (AAAs) were created by angiotensin II infusion in ApoE-deficient mice (n = 9). These mice were scanned with a micro-CT imaging system before and after the intravenous injection of GNPs. RESULTS: The CT attenuation values of macrophages incubated with GNPs were significantly higher than those of cells incubated without GNPs (p < 0.04). Macrophages incubated with and without GNPs showed similar viability. The viability of macrophages incubated with GNPs (100 µg/ml or 200 µg/ml) was decreased by high-intensity NIR laser exposure but not by low-intensity NIR laser exposure. In vivo CT images showed higher CT attenuation values in diseased carotid arteries than in non-diseased contralateral arteries, although the difference was not statistically significant. The CT attenuation values of the perivascular area in AAAs of mice injected with GNPs were significantly higher than those of mice without injection (p = 0.0001). CONCLUSIONS: Macrophages with GNPs had reduced viability upon NIR laser exposure. GNPs intravenously injected into mice accumulated in sites of vascular inflammation, allowing detection of carotid atherosclerosis and AAAs in CT imaging. Thus, GNPs have potential as multifunctional biologically compatible particles for the detection and therapy of vascular inflammation.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Ratones , Medios de Contraste , Angiotensina II , Tomografía Computarizada por Rayos X , Ratones Endogámicos , Inflamación/diagnóstico por imagen , Inflamación/patología , Apolipoproteínas E
7.
Pulse (Basel) ; 10(1-4): 1-18, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36660436

RESUMEN

Arterial stiffness is a progressive aging process that predicts cardiovascular disease. Pulse wave velocity (PWV) has emerged as a noninvasive, valid, and reliable measure of arterial stiffness and an independent risk predictor for adverse outcomes. However, up to now, PWV measurement has mostly been used as a tool for risk prediction and has not been widely used in clinical practice. This consensus paper aims to discuss multiple PWV measurements currently available in Asia and to provide evidence-based assessment together with recommendations on the clinical use of PWV. For the methodology, PWV measurement including the central elastic artery is essential and measurements including both the central elastic and peripheral muscular arteries, such as brachial-ankle PWV and cardio-ankle vascular index, can be a good alternative. As Asian populations are rapidly aging, timely detection and intervention of "early vascular aging" in terms of abnormally high PWV values are recommended. More evidence is needed to determine if a PWV-guided therapeutic approach will be beneficial to the prevention of cardiovascular diseases beyond current strategies. Large-scale randomized controlled intervention studies are needed to guide clinicians.

8.
Adv Funct Mater ; 31(37)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34733130

RESUMEN

Disruption of vulnerable atherosclerotic plaques often leads to myocardial infarction and stroke, the leading causes of morbidity and mortality in the United States. A diagnostic method that detects high-risk atherosclerotic plaques at early stages could prevent these sequelae. The abundance of immune cells in the arterial wall, especially inflammatory Ly-6Chi monocytes and foamy macrophages, is indicative of plaque inflammation, and may be associated with plaque vulnerability. Hence, we sought to develop a new method that specifically targets these immune cells to offer clinically-relevant diagnostic information about cardiovascular disease. We combine ultra-selective nanoparticle targeting of Ly-6Chi monocytes and foamy macrophages with clinically-viable photoacoustic imaging (PAI) in order to precisely and specifically image inflamed plaques ex vivo in a mouse model that mimics human vulnerable plaques histopathologically. Within the plaques, high-dimensional single-cell flow cytometry (13-parameter) showed that our nanoparticles were almost-exclusively taken up by the Ly-6Chi monocytes and foamy macrophages that heavily infiltrate plaques. PAI identified inflamed atherosclerotic plaques that display ~6-fold greater signal compared to controls (P<0.001) six hours after intravenous injection of ultra-selective carbon nanotubes, with in vivo corroboration via optical imaging. Our highly selective strategy may provide a targeted, non-invasive imaging strategy to accurately identify and diagnose inflamed atherosclerotic lesions.

9.
Nano Lett ; 21(13): 5714-5721, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34156253

RESUMEN

Carotid artery stenosis (CAS) is a major cause of stroke or transient ischemic attack (TIA, mini-stroke) in the United States. Carotid endarterectomy (CEA), a surgical procedure, is used to treat CAS. According to the American Heart Association, 1 out of 5 patients underwent CEA inappropriately, which was most commonly due to apparent overestimation of stenosis severity, and half had uncertain indicators. The current imaging modalities are limited in providing critical information on carotid arterial plaque content, extent, and biology. To circumvent these limitations, we developed a sensing interferometer (SI) imaging system to assess vulnerable carotid plaques noninvasively to detect stenosis, neovascularization, and intraplaque hemorrhage (IPH). We have custom-built a SI prototype and its peripheral systems with back-mode-projection capability. We detected stenosis, neo-vessels, and IPH through SI imaging system in in vivo mice carotid atherosclerotic plaques and further verified the same plaques ex vivo through a histology scope, CRi Maestro, and histological analysis.


Asunto(s)
Estenosis Carotídea , Endarterectomía Carotidea , Placa Aterosclerótica , Animales , Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Hemorragia/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Ratones , Placa Aterosclerótica/diagnóstico por imagen
10.
Nanotechnology ; 32(34)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34057430

RESUMEN

Atherosclerosis is a macrophage-related inflammatory disease that remains a leading cause of death worldwide. Magnetic iron oxide (IO) nanocrystals are clinically used as magnetic resonance imaging contrast agents and their application as a detection agent for macrophages in arterial lesions has been studied extensively. We recently fabricated heparin-modified calcium phosphate (CaP) nanoparticles loaded with a large number of IO nanocrystals via coprecipitation from a supersaturated CaP solution supplemented with heparin and ferucarbotran (IO nanocrystals coated with carboxydextran). In this study, we further increased the content of IO nanocrystals in the heparin-modified IO-CaP composite nanoparticles by increasing the ferucarbotran concentration in the supersaturated CaP solution. The increase in nanoparticle IO content caused a decrease in particle diameter without impairing its dispersibility; the nanoparticles remained dispersed in water for up to 2 h due to electrostatic repulsion between particles due to the surface modification with heparin. The nanoparticles were more effectively taken up by murine RAW264.7 macrophages compared to free ferucarbotran without showing significant cytotoxicity. A preliminaryin vivostudy showed that the nanoparticles injected intravenously into mice delivered more IO nanocrystals to macrophage-rich carotid arterial lesions than free ferucarbotran. Our nanoparticles have potential as a delivery agent of IO nanocrystals to macrophages in arterial lesions.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Fosfatos de Calcio/administración & dosificación , Compuestos Férricos/química , Estreptozocina/efectos adversos , Administración Intravenosa , Animales , Aterosclerosis/etiología , Fosfatos de Calcio/síntesis química , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Dextranos/química , Modelos Animales de Enfermedad , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas de Magnetita/química , Masculino , Ratones , Nanocompuestos , Células RAW 264.7 , Resultado del Tratamiento
11.
Colloids Surf B Biointerfaces ; 194: 111169, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32554258

RESUMEN

Calcium phosphate (CaP) nanoparticles immobilizing gold (Au) nanocrystals (Au-CaP composite nanoparticles) would be useful in diagnoses and/or treatments with Au nanocrystals. In this study, we achieved the rapid one-pot fabrication of such nanoparticles via coprecipitation in labile supersaturated CaP solutions by using appropriate Au sources, namely, Au nanocrystals coated with amino-terminated polyethylene glycol (PEG). In this process, amino groups at the PEG terminal played a crucial role in the coprecipitation with CaP through affinity interactions, and thus in the formation of Au-CaP composite nanoparticles; however, the molecular weight of the PEG chain was not a controlling factor in the coprecipitation. The important role of the functional groups at the PEG terminal was suggested by comparison with Au nanocrystals coated with carboxyl- and methoxy-terminated PEG, both of which barely coprecipitated with CaP and failed to form Au-CaP composite nanoparticles. Au nanocrystals coated with amino-terminated PEG were immobilized on the CaP nanoparticles, thereby regulating their size (∼140 nm in hydrodynamic diameter) and their dispersion in water. This coprecipitation process and the resulting Au-CaP composite nanoparticles have great potential in biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Fosfatos de Calcio , Oro , Polietilenglicoles
13.
JACC Clin Electrophysiol ; 5(10): 1144-1157, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31648739

RESUMEN

OBJECTIVES: This study aimed to develop a novel premature ventricular contraction (PVC) mapping method to predict PVC origins in whole ventricles by merging a magnetocardiography (MCG) image with a cardiac computed tomography (CT) image. BACKGROUND: MCG can noninvasively discriminate PVCs originating from the aortic sinus cusp from those originating from the right ventricular outflow tract. METHODS: This study was composed of 22 candidates referred for catheter ablation of idiopathic PVCs. MCG and CT were performed the same day before ablation. Estimated origins by MCG-CT imaging using the recursive null steering spatial filter algorithm were compared with origins determined by electroanatomic mapping (CARTO, Biosense Webster, Inc., Diamond Bar, California) during the ablation procedure. Radiopaque acrylic markers for the CT scan and coil markers generating a weak magnetic field during MCG measurements were used as reference markers to merge the 2 images 3-dimensionally. RESULTS: PVC origins were determined by endocardial and epicardial mapping and ablation results in 18 (86%) patients (right ventricular outflow tract in 10 patients, aortic sinus cusp in 2 patients, interventricular septum in 1 patient, near His bundle in 1 patient, right ventricular free wall in 1 patient, and left ventricular free wall in 3 patients). Estimated origins by MCG-CT imaging matched the origins determined during the procedure in 94% (17 of 18) of patients, whereas the electrocardiography algorithms were accurate in only 56% (10 of 18). Discrimination of an epicardium versus an endocardium or right- versus left-sided septum was successful in 3 of 4 patients (75%). CONCLUSIONS: The diagnostic accuracy of noninvasive MCG-CT mapping was high enough to allow clinical use to predict the site of PVC origins in the whole ventricles.


Asunto(s)
Magnetocardiografía , Tomografía Computarizada por Rayos X , Complejos Prematuros Ventriculares/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Bloqueo de Rama/fisiopatología , Ablación por Catéter , Femenino , Ventrículos Cardíacos/fisiopatología , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Imagen Multimodal , Seno Aórtico/fisiopatología , Resultado del Tratamiento , Complejos Prematuros Ventriculares/fisiopatología , Complejos Prematuros Ventriculares/cirugía
14.
Heart Vessels ; 33(5): 513-520, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29168014

RESUMEN

Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging has demonstrated the capability of stratifying hypertrophic cardiomyopathy (HCM). Stress perfusion test of CMR can quantify myocardial perfusion reserve (MPR), but its clinical role is not determined. The purpose of this study was to investigate the relationship between MPR and LGE in patients with HCM. A total of 61 consecutive cases underwent complete evaluation with electrocardiography and CMR [cine imaging, coronary MR angiography (MRA), and stress perfusion testing with LGE]. HCM cases were diagnosed by the Japanese conventional guideline prior to this CMR study. Mild LVH was defined as more than 13 mm in maximum LV wall thickness at end diastole on the cine imaging of the CMR. MPR was calculated as the ratio of stress/rest myocardial blood flow using an intensity curve on the stress perfusion test. Cases with ischemic heart disease were excluded from the study based on clinical history and coronary MRA. There were 37 HCM and 24 mild LVH cases (average age: 60.5 ± 10.9 vs. 64.8 ± 10.8; male: 62.2 vs. 75.0%, respectively, non-significant). MPR in HCM was lower than in LVH (1.5 ± 0.5 vs. 2.2 ± 0.9, p < 0.001) and normal subjects (2.4 ± 0.9, p < 0.001). MPR in HCM with LGE (N = 34) was lower than in HCM without LGE (N = 3) (1.4 ± 0.5 vs. 2.1 ± 0.2, p = 0.014). Multiple regression analysis verified that LGE was the strongest predictor of MPR among multiple clinical parameters, including LVH, LV dysfunction (ejection fraction < 50%), and the presence of negative T wave (p < 0.001). MPR was impaired in HCM with LGE compared with HCM without LGE. The clinical role of MPR on CMR needs to be clarified by further research.


Asunto(s)
Cardiomiopatía Hipertrófica/diagnóstico , Circulación Coronaria/fisiología , Electrocardiografía , Gadolinio DTPA/farmacología , Imagen por Resonancia Cinemagnética/métodos , Miocardio/patología , Cardiomiopatía Hipertrófica/fisiopatología , Medios de Contraste/farmacología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos
15.
Colloids Surf B Biointerfaces ; 162: 135-145, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29190464

RESUMEN

We developed a facile one-pot fabrication process for magnetic iron oxide-calcium phosphate (IO-CaP) composite nanoparticles via coprecipitation in labile supersaturated CaP solutions containing IO nanocrystals. All the source solutions used were clinically approved for injection, including water and magnetic IO nanocrystals (ferucarbotran, used as a negative magnetic resonance imaging (MRI) contrast agent). This ensured that the resulting nanoparticles were pathogen- and endotoxin-free. The dispersants used were clinically approved heparin sodium (heparin) or adenosine triphosphate disodium hydrate (ATP), which were added to the IO-containing labile supersaturated CaP solutions. Both heparin and ATP coprecipitated with CaP and ferucarbotran to form heparin- and ATP-modified IO-CaP nanoparticles, respectively, with a hydrodynamic diameter of a few hundred nanometers. Both the resulting nanoparticles exhibited relatively large negative zeta potentials, caused by the negatively charged functional groups in heparin and ATP, which improved the particle dispersibility when compared to non-modified IO-CaP nanoparticles. The heparin-modified IO-CaP nanoparticles were effectively ingested by murine macrophages (RAW264.7) without showing significant cytotoxicity but barely ingested by non-phagocytotic human umbilical vein endothelial cells, indicating the potential of these nanoparticles for targeted delivery to macrophages. The heparin-modified IO-CaP nanoparticles exhibited a negative contrast enhancing ability for MRI. Our results show that IO-CaP nanoparticles have potential as delivery and MRI contrast agents for macrophages.


Asunto(s)
Medios de Contraste/química , Portadores de Fármacos , Imagen por Resonancia Magnética/métodos , Nanocompuestos/química , Nanopartículas/metabolismo , Adenosina Trifosfato/química , Animales , Transporte Biológico , Fosfatos de Calcio/química , Dextranos/química , Compuestos Férricos/química , Heparina/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Nanopartículas de Magnetita/química , Ratones , Nanocompuestos/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Células RAW 264.7 , Especificidad de la Especie , Electricidad Estática
16.
J Magn Reson Imaging ; 45(4): 1144-1153, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27689830

RESUMEN

PURPOSE: To evaluate Arg-Gly-Asp (RGD)-conjugated human ferritin (HFn) iron oxide nanoparticles for in vivo magnetic resonance imaging (MRI) of vascular inflammation and angiogenesis in experimental carotid disease and abdominal aortic aneurysm (AAA). MATERIALS AND METHODS: HFn was genetically engineered to express the RGD peptide and Fe3 O4 nanoparticles were chemically synthesized inside the engineered HFn (RGD-HFn). Macrophage-rich left carotid lesions were induced by ligation in FVB mice made hyperlipidemic and diabetic (n = 14), with the contralateral right carotid serving as control. Murine AAAs were created by continuous angiotensin II infusion in ApoE-deficient mice (n = 12), while control mice underwent saline infusion (n = 8). All mice were imaged before and after intravenous injection with either RGD-HFn-Fe3 O4 or HFn-Fe3 O4 using a gradient-echo sequence on a whole-body 3T clinical scanner, followed by histological analysis. The nanoparticle accumulation was assessed by the extent of T2*-induced carotid lumen reduction (% lumen loss) or aortic T2*-weighted signal intensity reduction (% SI [signal intensity] loss). RESULTS: RGD-HFn-Fe3 O4 was taken up more than HFn-Fe3 O4 in both the ligated left carotid arteries (% lumen loss; 69 ± 9% vs. 36 ± 7%, P = 0.01) and AAAs (% SI loss; 47 ± 6% vs. 20 ± 5%, P = 0.01). The AAA % SI loss correlated positively with AAA size (r = 0.89, P < 0.001). Histology confirmed the greater accumulation and colocalization of RGD-HFn-Fe3 O4 to both vascular macrophages and endothelial cells. CONCLUSION: RGD-HFn-Fe3 O4 enhances in vivo MRI by targeting both vascular inflammation and angiogenesis, and provides a promising translatable MRI approach to detect high-risk atherosclerotic and aneurysmal vascular diseases. LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:1144-1153.


Asunto(s)
Aneurisma de la Aorta Abdominal/fisiopatología , Enfermedades de las Arterias Carótidas/fisiopatología , Ferritinas/metabolismo , Inflamación/fisiopatología , Imagen por Resonancia Magnética/métodos , Oligopéptidos/metabolismo , Animales , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/metabolismo , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/metabolismo , Arterias Carótidas/fisiopatología , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/metabolismo , Modelos Animales de Enfermedad , Compuestos Férricos/metabolismo , Inflamación/diagnóstico por imagen , Inflamación/metabolismo , Masculino , Ratones , Nanopartículas , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/metabolismo , Neovascularización Patológica/fisiopatología , Enfermedades Vasculares/diagnóstico por imagen , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/fisiopatología
17.
PLoS One ; 11(8): e0160522, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27532109

RESUMEN

BACKGROUND AND PURPOSE: Cardiovascular disease is the leading cause of death worldwide, mainly due to an increasing prevalence of atherosclerosis characterized by inflammatory plaques. Plaques with high levels of macrophage infiltration are considered "vulnerable" while those that do not have significant inflammation are considered stable; cathepsin protease activity is highly elevated in macrophages of vulnerable plaques and contributes to plaque instability. Establishing novel tools for non-invasive molecular imaging of macrophages in plaques could aid in preclinical studies and evaluation of therapeutics. Furthermore, compounds that reduce the macrophage content within plaques should ultimately impact care for this disease. METHODS: We have applied quenched fluorescent cathepsin activity-based probes (ABPs) to a murine atherosclerosis model and evaluated their use for in vivo imaging using fluorescent molecular tomography (FMT), as well as ex vivo fluorescence imaging and fluorescent microscopy. Additionally, freshly dissected human carotid plaques were treated with our potent cathepsin inhibitor and macrophage apoptosis was evaluated by fluorescent microscopy. RESULTS: We demonstrate that our ABPs accurately detect murine atherosclerotic plaques non-invasively, identifying cathepsin activity within plaque macrophages. In addition, our cathepsin inhibitor selectively induced cell apoptosis of 55%±10% of the macrophage within excised human atherosclerotic plaques. CONCLUSIONS: Cathepsin ABPs present a rapid diagnostic tool for macrophage detection in atherosclerotic plaque. Our inhibitor confirms cathepsin-targeting as a promising approach to treat atherosclerotic plaque inflammation.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Catepsinas/metabolismo , Colorantes Fluorescentes , Macrófagos/enzimología , Animales , Apoptosis/efectos de los fármacos , Estenosis Carotídea/diagnóstico por imagen , Catepsinas/antagonistas & inhibidores , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Microscopía Fluorescente , Imagen Molecular/métodos , Placa Aterosclerótica/diagnóstico por imagen , Inhibidores de Proteasas/farmacología
18.
Radiology ; 280(3): 826-36, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27332865

RESUMEN

Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article.


Asunto(s)
Genes Reporteros , Corazón/diagnóstico por imagen , Trasplante de Células Madre Mesenquimatosas , Imagen Molecular/métodos , Imagen Multimodal/métodos , Animales , Radioisótopos de Flúor , Guanina/análogos & derivados , Imagen por Resonancia Magnética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Porcinos
19.
Radiology ; 280(3): 815-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27308957

RESUMEN

Purpose To use multimodality reporter-gene imaging to assess the serial survival of marrow stromal cells (MSC) after therapy for myocardial infarction (MI) and to determine if the requisite preclinical imaging end point was met prior to a follow-up large-animal MSC imaging study. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice (n = 19) that had experienced MI were injected with bone marrow-derived MSC that expressed a multimodality triple fusion (TF) reporter gene. The TF reporter gene (fluc2-egfp-sr39ttk) consisted of a human promoter, ubiquitin, driving firefly luciferase 2 (fluc2), enhanced green fluorescent protein (egfp), and the sr39tk positron emission tomography reporter gene. Serial bioluminescence imaging of MSC-TF and ex vivo luciferase assays were performed. Correlations were analyzed with the Pearson product-moment correlation, and serial imaging results were analyzed with a mixed-effects regression model. Results Analysis of the MSC-TF after cardiac cell therapy showed significantly lower signal on days 8 and 14 than on day 2 (P = .011 and P = .001, respectively). MSC-TF with MI demonstrated significantly higher signal than MSC-TF without MI at days 4, 8, and 14 (P = .016). Ex vivo luciferase activity assay confirmed the presence of MSC-TF on days 8 and 14 after MI. Conclusion Multimodality reporter-gene imaging was successfully used to assess serial MSC survival after therapy for MI, and it was determined that the requisite preclinical imaging end point, 14 days of MSC survival, was met prior to a follow-up large-animal MSC study. (©) RSNA, 2016 Online supplemental material is available for this article.


Asunto(s)
Genes Reporteros , Trasplante de Células Madre Mesenquimatosas/métodos , Imagen Molecular , Imagen Multimodal , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/terapia , Animales , Femenino , Luciferasas de Luciérnaga/metabolismo , Mediciones Luminiscentes , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones , Transfección
20.
J Nucl Med ; 57(10): 1583-1590, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27199363

RESUMEN

Macrophages are cellular mediators of vascular inflammation and are involved in the formation of atherosclerotic plaques. These immune cells secrete proteases such as matrix metalloproteinases and cathepsins that contribute to disease formation and progression. Here, we demonstrate that activity-based probes (ABPs) targeting cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes can also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. METHODS: Macrophage-rich carotid lesions were induced in FVB mice fed on a high-fat diet by streptozotocin injection followed by ligation of the left common carotid artery. Mice with carotid atherosclerotic plaques were injected with the optical or dual-modality probes BMV109 and BMV101, respectively, via the tail vein and noninvasively imaged by optical and small-animal PET/CT at different time points. After noninvasive imaging, the murine carotid arteries were imaged in situ and ex vivo, followed by immunofluorescence staining to confirm target labeling. Additionally, human carotid plaques were topically labeled with the probe and analyzed by both sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunofluorescence staining to confirm the primary targets of the probe. RESULTS: Quantitative analysis of the signal intensity from both optical and PET/CT imaging showed significantly higher levels of accumulation of BMV109 and BMV101 (P < 0.005 and P < 0.05, respectively) in the ligated left carotid arteries than the right carotid or healthy arteries. Immunofluorescence staining for macrophages in cross-sectional slices of the murine artery demonstrated substantial infiltration of macrophages in the neointima and adventitia of the ligated left carotid arteries compared with the right. Analysis of the human plaque tissues by sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed that the primary targets of the probe were cathepsins X, B, S, and L. Immunofluorescence labeling of the human tissue with the probe demonstrated colocalization of the probe with CD68, elastin, and cathepsin S, similar to that observed in the experimental carotid inflammation murine model. CONCLUSION: We demonstrate that ABPs targeting the cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes could also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. Therefore, ABPs targeting the cysteine cathepsins are potentially valuable new reagents for rapid and noninvasive imaging of atherosclerotic disease progression and plaque vulnerability.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Catepsinas/metabolismo , Humanos , Macrófagos/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...