Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Microbiol Spectr ; 12(4): e0358623, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38391232

Although smallpox has been eradicated, other orthopoxviruses continue to be a public health concern as exemplified by the ongoing Mpox (formerly monkeypox) global outbreak. While medical countermeasures (MCMs) previously approved by the Food and Drug Administration for the treatment of smallpox have been adopted for Mpox, previously described vulnerabilities coupled with the questionable benefit of at least one of the therapeutics during the 2022 Mpox outbreak reinforce the need for identifying and developing other MCMs against orthopoxviruses. Here, we screened a panel of Merck proprietary small molecules and identified a novel nucleoside inhibitor with potent broad-spectrum antiviral activity against multiple orthopoxviruses. Efficacy testing of a 7-day dosing regimen of the orally administered nucleoside in a murine model of severe orthopoxvirus infection yielded a dose-dependent increase in survival. Treated animals had greatly reduced lesions in the lung and nasal cavity, particularly in the 10 µg/mL dosing group. Viral levels were also markedly lower in the UMM-766-treated animals. This work demonstrates that this nucleoside analog has anti-orthopoxvirus efficacy and can protect against severe disease in a murine orthopox model.IMPORTANCEThe recent monkeypox virus pandemic demonstrates that members of the orthopoxvirus, which also includes variola virus, which causes smallpox, remain a public health issue. While currently FDA-approved treatment options exist, risks that resistant strains of orthopoxviruses may arise are a great concern. Thus, continued exploration of anti-poxvirus treatments is warranted. Here, we developed a template for a high-throughput screening assay to identify anti-poxvirus small-molecule drugs. By screening available drug libraries, we identified a compound that inhibited orthopoxvirus replication in cell culture. We then showed that this drug can protect animals against severe disease. Our findings here support the use of existing drug libraries to identify orthopoxvirus-targeting drugs that may serve as human-safe products to thwart future outbreaks.


Mpox (monkeypox) , Orthopoxvirus , Smallpox , Variola virus , Animals , Mice , Humans , Nucleosides/therapeutic use , Smallpox/drug therapy , Smallpox/prevention & control , Disease Models, Animal
2.
Bioorg Med Chem Lett ; 94: 129432, 2023 10 01.
Article En | MEDLINE | ID: mdl-37591319

Nucleoside and nucleobase analogs capable of interfering with nucleic acid synthesis have played essential roles in fighting infectious diseases. However, many of these agents are associated with important and potentially lethal off-target intracellular effects that limit their use. Based on the previous discovery of base-modified 2'-deoxyuridines, which showed high anticancer activity while exhibiting lower toxicity toward rapidly dividing normal human cells compared to antimetabolite chemotherapeutics, we hypothesized that a similar modification of the N4-hydroxycytidine (NHC) molecule would provide novel antiviral compounds with diminished side effects. This presumption is due to the substantial structural difference with natural cytidine leading to less recognizability by host cell enzymes. Among the 42 antimetabolite species that have been synthesized and screened against VEEV, one hit compound was identified. The structural features of the modifying moiety were similar to those of the anticancer lead 2'-deoxyuridine derivative reported previously, providing an opportunity to pursue further structure-activity relationship (SAR) studies directed to lead improvement, and obtain insight into the mechanism of action, which can lead to identifying drug candidates against a broad spectrum of RNA viral infections.


Encephalitis Virus, Venezuelan Equine , Animals , Humans , Antimetabolites , Antiviral Agents/pharmacology , Deoxyuridine , Horses , Immunosuppressive Agents
3.
Antiviral Res ; 210: 105513, 2023 02.
Article En | MEDLINE | ID: mdl-36592670

Antibody-based therapy is emerging as a critical therapeutic countermeasure to treat acute viral infections by offering rapid protection against clinical disease. The advancements in structural biology made it feasible to rationalize monoclonal antibodies (mAbs) by identifying key and, possibly, neutralizing epitopes of viral proteins for therapeutic purposes. A critical component in assessing mAbs during pandemics requires the development of rapid but detailed methods to detect and quantitate the neutralization activity. In this study, we developed and optimized two high-content image (HCI)-based assays: one to detect viral proteins by staining and the second to quantify cytopathic viral effects by a label-free phenotypic assay. These assays were employed to screen for therapeutic antibodies against the monkeypox virus (MPXV) using surrogate poxviruses such as vaccinia virus (VACV). Plaque-based neutralization results confirmed the HCI data. The phenotypic assay found pox virus-induced syncytia formation in various cells, and we were able to quantitate and use this phenotype to screen mAbs. The HCI identified several potent VACV-neutralizing antibodies that showed in vitro efficacy against both clades of MPXV. In addition, a combination study of ST-246/tecovirimat/TPOXX a single neutralizing antibody Ab-40, showed synergistic activity against VACV in an in-vitro neutralization assay. This rapid high-content method utilizing state-of-the-art technologies enabled the evaluation of hundreds of mAbs quickly to identify several potent anti-MPXV neutralizing mAbs for further development.


Antibodies, Viral , Monkeypox virus , Antibodies, Neutralizing , Vaccinia virus/genetics , Viral Proteins , Antibodies, Monoclonal/pharmacology , Neutralization Tests
4.
Front Pharmacol ; 12: 763950, 2021.
Article En | MEDLINE | ID: mdl-34646144

Botulinum neurotoxins (BoNTs) are known as the most potent bacterial toxins, which can cause potentially deadly disease botulism. BoNT Serotype A (BoNT/A) is the most studied serotype as it is responsible for most human botulism cases, and its formulations are extensively utilized in clinics for therapeutic and cosmetic applications. BoNT/A has the longest-lasting effect in neurons compared to other serotypes, and there has been high interest in understanding how BoNT/A manages to escape protein degradation machinery in neurons for months. Recent work demonstrated that an E3 ligase, HECTD2, leads to efficient ubiquitination of the BoNT/A Light Chain (A/LC); however, the dominant activity of a deubiquitinase (DUB), VCIP135, inhibits the degradation of the enzymatic component. Another DUB, USP9X, was also identified as a potential indirect contributor to A/LC degradation. In this study, we screened a focused ubiquitin-proteasome pathway inhibitor library, including VCIP135 and USP9X inhibitors, and identified ten potential lead compounds affecting BoNT/A mediated SNAP-25 cleavage in neurons in pre-intoxication conditions. We then tested the dose-dependent effects of the compounds and their potential toxic effects in cells. A subset of the lead compounds demonstrated efficacy on the stability and ubiquitination of A/LC in cells. Three of the compounds, WP1130 (degrasyn), PR-619, and Celastrol, further demonstrated efficacy against BoNT/A holotoxin in an in vitro post-intoxication model. Excitingly, PR-619 and WP1130 are known inhibitors of VCIP135 and USP9X, respectively. Modulation of BoNT turnover in cells by small molecules can potentially lead to the development of effective countermeasures against botulism.

5.
Eur J Med Chem ; 162: 32-50, 2019 Jan 15.
Article En | MEDLINE | ID: mdl-30408747

Ebola virus (EBOV) causes a deadly hemorrhagic fever in humans and non-human primates. There is currently no FDA-approved vaccine or medication to counter this disease. Here, we report on the design, synthesis and anti-viral activities of two classes of compounds which show high potency against EBOV in both in vitro cell culture assays and in vivo mouse models Ebola viral disease. These compounds incorporate the structural features of cationic amphiphilic drugs (CAD), i.e they possess both a hydrophobic domain and a hydrophilic domain consisting of an ionizable amine functional group. These structural features enable easily diffusion into cells but once inside an acidic compartment their amine groups became protonated, ionized and remain trapped inside the acidic compartments such as late endosomes and lysosomes. These compounds, by virtue of their lysomotrophic functions, blocked EBOV entry. However, unlike other drugs containing a CAD moiety including chloroquine and amodiaquine, compounds reported in this study display faster kinetics of accumulation in the lysosomes, robust expansion of late endosome/lysosomes, relatively more potent suppression of lysosome fusion with other vesicular compartments and inhibition of cathepsins activities, all of which play a vital role in anti-EBOV activity. Furthermore, the diazachrysene 2 (ZSML08) that showed most potent activity against EBOV in in vitro cell culture assays also showed significant survival benefit with 100% protection in mouse models of Ebola virus disease, at a low dose of 10 mg/kg/day. Lastly, toxicity studies in vivo using zebrafish models suggest no developmental defects or toxicity associated with these compounds. Overall, these studies describe two new pharmacophores that by virtue of being potent lysosomotrophs, display potent anti-EBOV activities both in vitro and in vivo animal models of EBOV disease.


Antiviral Agents/chemistry , Chrysenes/chemistry , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Animals , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Chrysenes/pharmacology , Chrysenes/toxicity , Lysosomes/metabolism , Mice , Surface-Active Agents , Virus Internalization/drug effects , Zebrafish
6.
Adv Exp Med Biol ; 1062: 303-318, 2018.
Article En | MEDLINE | ID: mdl-29845541

The United States Army Medical Research Institute of Infectious Diseases (USAMRIID) possesses an array of expertise in diverse capabilities for the characterization of emerging infectious diseases from the pathogen itself to human or animal infection models. The recent Zika virus (ZIKV) outbreak was a challenge and an opportunity to put these capabilities to work as a cohesive unit to quickly respond to a rapidly developing threat. Next-generation sequencing was used to characterize virus stocks and to understand the introduction and spread of ZIKV in the United States. High Content Imaging was used to establish a High Content Screening process to evaluate antiviral therapies. Functional genomics was used to identify critical host factors for ZIKV infection. An animal model using the temporal blockade of IFN-I in immunocompetent laboratory mice was investigated in conjunction with Positron Emission Tomography to study ZIKV. Correlative light and electron microscopy was used to examine ZIKV interaction with host cells in culture and infected animals. A quantitative mass spectrometry approach was used to examine the protein and metabolite type or concentration changes that occur during ZIKV infection in blood, cells, and tissues. Multiplex fluorescence in situ hybridization was used to confirm ZIKV replication in mouse and NHP tissues. The integrated rapid response approach developed at USAMRIID presented in this review was successfully applied and provides a new template pathway to follow if a new biological threat emerges. This streamlined approach will increase the likelihood that novel medical countermeasures could be rapidly developed, evaluated, and translated into the clinic.


Academies and Institutes , Zika Virus Infection/virology , Zika Virus/physiology , Academies and Institutes/trends , Animals , Biomedical Research , Humans , Zika Virus/genetics
7.
J Med Chem ; 61(4): 1595-1608, 2018 02 22.
Article En | MEDLINE | ID: mdl-29385334

The synthesis and inhibitory potencies against botulinum neurotoxin serotype A light chain (BoNT/A LC) using in vitro HPLC based enzymatic assay for various steroidal, benzothiophene, thiophene, and adamantane 4-aminoquinoline derivatives are described. In addition, the compounds were evaluated for the activity against BoNT/A holotoxin in mouse embryonic stem cell derived motor neurons. Steroidal derivative 16 showed remarkable protection (up to 89% of uncleaved SNAP-25) even when administered 30 min postintoxication. This appears to be the first example of LC inhibitors antagonizing BoNT intoxication in mouse embryonic stem cell derived motor neurons (mES-MNs) in a postexposure model. Oral administration of 16 was well tolerated in the mouse up to 600 mg/kg, q.d. Although adequate unbound drug levels were not achieved at this dose, the favorable in vitro ADMET results strongly support further work in this series.


Aminoquinolines/pharmacology , Botulinum Toxins, Type A/antagonists & inhibitors , Motor Neurons/pathology , Adamantane/analogs & derivatives , Aminoquinolines/chemistry , Animals , Mice , Molecular Docking Simulation , Motor Neurons/drug effects , Mouse Embryonic Stem Cells/cytology , Steroids/chemistry , Synaptosomal-Associated Protein 25/metabolism , Thiophenes/chemistry , Toxicity Tests
8.
Cell Host Microbe ; 20(3): 357-367, 2016 Sep 14.
Article En | MEDLINE | ID: mdl-27569558

RNA viruses exhibit a variety of genome organization strategies, including multicomponent genomes in which each segment is packaged separately. Although multicomponent genomes are common among viruses infecting plants and fungi, their prevalence among those infecting animals remains unclear. We characterize a multicomponent RNA virus isolated from mosquitoes, designated Guaico Culex virus (GCXV). GCXV belongs to a diverse clade of segmented viruses (Jingmenvirus) related to the prototypically unsegmented Flaviviridae. The GCXV genome comprises five segments, each of which appears to be separately packaged. The smallest segment is not required for replication, and its presence is variable in natural infections. We also describe a variant of Jingmen tick virus, another Jingmenvirus, sequenced from a Ugandan red colobus monkey, thus expanding the host range of this segmented and likely multicomponent virus group. Collectively, this study provides evidence for the existence of multicomponent animal viruses and their potential relevance for animal and human health.


Colobus/virology , Culicidae/virology , RNA Viruses/isolation & purification , RNA Viruses/ultrastructure , Viruses/isolation & purification , Viruses/ultrastructure , Animals , Microscopy, Fluorescence , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , Viruses/classification , Viruses/genetics
9.
PLoS Pathog ; 12(2): e1005437, 2016 Feb.
Article En | MEDLINE | ID: mdl-26837067

Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)(FBXW11) E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCF(FBXW11) E3 ligase. We further show that disrupting the assembly of the SCF(FBXW11-NSs) E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCF(FBXW11-NSs) E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the ßTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of ßTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCF(FBXW11) complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.


F-Box Proteins/metabolism , Rift Valley fever virus , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics , Animals , Antiviral Agents/pharmacology , Cell Line , Cullin Proteins/metabolism , Genes, Regulator/genetics , Humans , Phosphorylation/genetics , Ubiquitin-Protein Ligases/metabolism
10.
J Cell Physiol ; 231(6): 1269-75, 2016 Jun.
Article En | MEDLINE | ID: mdl-26496460

Despite being densely packed with chromatin, nuclear bodies and a nucleoskeletal network, the nucleus is a remarkably dynamic organelle. Chromatin loops form and relax, RNA transcripts and transcription factors move diffusively, and nuclear bodies move. We show here that RNA splicing speckled domains (splicing speckles) fluctuate in constrained nuclear volumes and remodel their shapes. Small speckles move in a directed way toward larger speckles with which they fuse. This directed movement is reduced upon decreasing cellular ATP levels or inhibiting RNA polymerase II activity. The random movement of speckles is reduced upon decreasing cellular ATP levels, moderately reduced after inhibition of SWI/SNF chromatin remodeling and modestly increased upon inhibiting RNA polymerase II activity. To define the paths through which speckles can translocate in the nucleus, we generated a pressure gradient to create flows in the nucleus. In response to the pressure gradient, speckles moved along curvilinear paths in the nucleus. Collectively, our results demonstrate a new type of ATP-dependent motion in the nucleus. We present a model where recycling splicing factors return as part of small sub-speckles from distal sites of RNA processing to larger splicing speckles by a directed ATP-driven mechanism through interchromatin spaces.


Cell Nucleus/metabolism , Epithelial Cells/metabolism , Mammary Glands, Human/metabolism , RNA Splicing , RNA Transport , RNA/metabolism , Adenosine Triphosphate/metabolism , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Cell Line , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mammary Glands, Human/cytology , Models, Biological , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Pressure , RNA/genetics , RNA Interference , RNA Polymerase II/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Time Factors , Transfection
11.
3 Biotech ; 6(1): 35, 2016 Jun.
Article En | MEDLINE | ID: mdl-28330105

Acne vulgaris (acne) is a chronic inflammatory disease prevalent among adolescents and adults, with significant psychological effects. The aetiology of acne is multifactorial. Several pathophysiological associations have been identified in which Propionibacterium acnes plays a major role. This bacteria primarily affects areas containing oil glands including the face, back and trunk, where it causes the formation of seborrhoea and inflammatory lesions. The treatment methods currently in place have side effects. A novel alternative method with no side effects is hence required. In this study, we report the synthesis of an exopolysaccharide (EPS)-producing bacterial-based nanoparticle as a stable biocompatible material for drug delivery. We then evaluated the effectiveness of EPS-based nanoparticle cream against P. acnes. Our results demonstrate that EPS nanoparticles have great potential as a safe and effective topical treatment for acne vulgaris and other associated infections.

12.
BMC Microbiol ; 15: 259, 2015 Nov 06.
Article En | MEDLINE | ID: mdl-26545875

BACKGROUND: Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Gram-negative facultative intracellular pathogens, which are the causative agents of melioidosis and glanders, respectively. Depending on the route of exposure, aerosol or transcutaneous, infection by Bp or Bm can result in an extensive range of disease - from acute to chronic, relapsing illness to fatal septicemia. Both diseases are associated with difficult diagnosis and high fatality rates. About ninety five percent of patients succumb to untreated septicemic infections and the fatality rate is 50 % even when standard antibiotic treatments are administered. RESULTS: The goal of this study is to profile murine macrophage-mediated phenotypic and molecular responses that are characteristic to a collection of Bp, Bm, Burkholderia thailandensis (Bt) and Burkholderia oklahomensis (Bo) strains obtained from humans, animals, environment and geographically diverse locations. Burkholderia spp. (N = 21) were able to invade and replicate in macrophages, albeit to varying degrees. All Bp (N = 9) and four Bm strains were able to induce actin polymerization on the bacterial surface following infection. Several Bp and Bm strains showed reduced ability to induce multinucleated giant cell (MNGC) formation, while Bo and Bp 776 were unable to induce this phenotype. Measurement of host cytokine responses revealed a statistically significant Bm mediated IL-6 and IL-10 production compared to Bp strains. Hierarchical clustering of transcriptional data from 84 mouse cytokines, chemokines and their corresponding receptors identified 29 host genes as indicators of differential responses between the Burkholderia spp. Further validation confirmed Bm mediated Il-1b, Il-10, Tnfrsf1b and Il-36a mRNA expressions were significantly higher when compared to Bp and Bt. CONCLUSIONS: These results characterize the phenotypic and immunological differences in the host innate response to pathogenic and avirulent Burkholderia strains and provide insight into the phenotypic alterations and molecular targets underlying host-Burkholderia interactions.


Burkholderia mallei/immunology , Burkholderia pseudomallei/immunology , Chemokines/genetics , Macrophages/immunology , Macrophages/microbiology , Actins/metabolism , Animals , Burkholderia mallei/isolation & purification , Burkholderia mallei/pathogenicity , Burkholderia pseudomallei/isolation & purification , Burkholderia pseudomallei/pathogenicity , Gene Expression Regulation , Giant Cells/metabolism , Immunity, Innate , Macrophages/cytology , Mice , RAW 264.7 Cells
13.
Front Microbiol ; 6: 683, 2015.
Article En | MEDLINE | ID: mdl-26284031

Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3ß suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments.

14.
Neurotox Res ; 27(4): 384-98, 2015 May.
Article En | MEDLINE | ID: mdl-25782580

Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins' proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin's enzymatic components, to antagonize multiple BoNT serotypes in motor neurons.


Botulinum Toxins/toxicity , Motor Neurons/drug effects , Motor Neurons/metabolism , Signal Transduction/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism , Embryonic Stem Cells/cytology , Humans , Proteolysis/drug effects , Serogroup
15.
J Biomol Screen ; 20(1): 141-52, 2015 Jan.
Article En | MEDLINE | ID: mdl-25342145

High-content image-based screening was developed as an approach to test a small-molecule library of compounds targeting signal transduction pathways for antiviral activity against multiple highly pathogenic RNA viruses. Of the 2843 compounds screened, 120 compounds exhibited ≥60% antiviral activity. Four compounds (E225-0969, E528-0039, G118-0778, and G544-0735), which were most active against Rift Valley fever virus (RVFV) and showed broad-spectrum antiviral activity, were selected for further evaluation for their concentration-response profile and cytotoxicity. These compounds did not show any visible cytotoxicity at the highest concentration of compound tested (200 µM). All four of these compounds were more active than ribavirin against several viruses. One compound, E225-0969, had the lowest effective concentration (EC50 = 1.9-8.92 µM) for all the viruses tested. This compound was 13- and 43-fold more inhibitory against RVFV and Chikungunya virus (CHIKV), respectively, than ribavirin. The highest selectivity index (>106.2) was for E225-0969 against CHIKV. Time-of-addition assays suggested that all four lead compounds targeted early steps in the viral life cycle (entry and/or replication) but not virus egress. Overall, this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals against highly pathogenic viruses.


Antiviral Agents/pharmacology , High-Throughput Screening Assays/methods , Microbial Sensitivity Tests/methods , RNA Viruses/drug effects , RNA Viruses/metabolism , Signal Transduction/drug effects , Animals , Antiviral Agents/chemistry , Cell Line , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , High-Throughput Screening Assays/standards , Humans , Microbial Sensitivity Tests/standards , Microscopy, Fluorescence , Reproducibility of Results , Small Molecule Libraries , Virus Internalization/drug effects , Virus Replication/drug effects
16.
J Vis Exp ; (93): e51915, 2014 Nov 14.
Article En | MEDLINE | ID: mdl-25489815

Synaptosomal-associated protein-25 (SNAP-25) is a component of the soluble NSF attachment protein receptor (SNARE) complex that is essential for synaptic neurotransmitter release. Botulinum neurotoxin serotype A (BoNT/A) is a zinc metalloprotease that blocks exocytosis of neurotransmitter by cleaving the SNAP-25 component of the SNARE complex. Currently there are no licensed medicines to treat BoNT/A poisoning after internalization of the toxin by motor neurons. The development of effective therapeutic measures to counter BoNT/A intoxication has been limited, due in part to the lack of robust high-throughput assays for screening small molecule libraries. Here we describe a high content imaging (HCI) assay with utility for identification of BoNT/A inhibitors. Initial optimization efforts focused on improving the reproducibility of inter-plate results across multiple, independent experiments. Automation of immunostaining, image acquisition, and image analysis were found to increase assay consistency and minimize variability while enabling the multiparameter evaluation of experimental compounds in a murine motor neuron system.


Botulinum Toxins, Type A/antagonists & inhibitors , Synaptosomal-Associated Protein 25/analysis , Animals , Botulinum Toxins, Type A/metabolism , Cells, Cultured , Fluorescent Antibody Technique/methods , Mice , Motor Neurons/chemistry , Motor Neurons/metabolism , Reproducibility of Results , Synaptosomal-Associated Protein 25/metabolism
17.
PLoS Negl Trop Dis ; 8(8): e3095, 2014 Aug.
Article En | MEDLINE | ID: mdl-25144302

High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV) and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥ 50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362), which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their mechanism of action and any possible deleterious effects on host cellular biology.


Image Processing, Computer-Assisted/methods , Protease Inhibitors/pharmacology , Rift Valley fever virus/drug effects , Small Molecule Libraries , Virology/methods , Animals , Chlorocebus aethiops , Ebolavirus , HeLa Cells , Humans , Rift Valley Fever , Vero Cells
18.
PLoS One ; 9(5): e93483, 2014.
Article En | MEDLINE | ID: mdl-24809507

Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.


HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Rift Valley fever virus/metabolism , Viral Proteins/metabolism , Virion/metabolism , Gene Silencing , HSP90 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Proteomics , RNA, Small Interfering , Rift Valley Fever/virology , Rift Valley fever virus/genetics , Tandem Mass Spectrometry , Viral Proteins/genetics , Virion/genetics
19.
PLoS One ; 9(2): e87201, 2014.
Article En | MEDLINE | ID: mdl-24516547

Alveolar macrophages (AMs) phagocytose Bacillus anthracis following inhalation and induce the production of pro-inflammatory cytokines and chemokines to mediate the activation of innate immunity. Ames, the virulent strain of B. anthracis, contains two plasmids that encode the antiphagocytic poly-γ-d-glutamic acid capsule and the lethal toxin. The attenuated Sterne strain of B. anthracis, which lacks the plasmid encoding capsule, is widely adapted as a vaccine strain. Although differences in the outcome of infection with the two strains may have originated from the presence or absence of an anti-phagocytic capsule, the disease pathogenesis following infection will be manifested via the host responses, which is not well understood. To gain understanding of the host responses at cellular level, a microarray analysis was performed using primary rhesus macaque AMs infected with either Ames or Sterne spores. Notably, 528 human orthologs were identified to be differentially expressed in AMs infected with either strain of the B. anthracis. Meta-analyses revealed genes differentially expressed in response to B. anthracis infection were also induced upon infections with multiple pathogens such as Francisella Novicida or Staphylococcus aureus. This suggests the existence of a common molecular signature in response to pathogen infections. Importantly, the microarray and protein expression data for certain cytokines, chemokines and host factors provide further insights on how cellular processes such as innate immune sensing pathways, anti-apoptosis versus apoptosis may be differentially modulated in response to the virulent or vaccine strain of B. anthracis. The reported differences may account for the marked difference in pathogenicity between these two strains.


Bacillus anthracis , Gene Expression Regulation , Macrophages, Alveolar/microbiology , Animals , Antigens, Bacterial/immunology , Immunity, Innate , Macaca mulatta , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Phagocytosis/immunology , Spores, Bacterial/immunology , Spores, Bacterial/metabolism
20.
Expert Rev Mol Diagn ; 14(2): 153-68, 2014 Mar.
Article En | MEDLINE | ID: mdl-24450833

Botulinum neurotoxins (BoNTs) are exceptionally potent inhibitors of neurotransmission, causing muscle paralysis and respiratory failure associated with the disease botulism. Currently, no drugs are available to counter intracellular BoNT poisoning. To develop effective medical treatments, cell-based assays provide a valuable system to identify novel inhibitors in a time- and cost-efficient manner. Consequently, cell-based systems including immortalized cells, primary neurons and stem cell-derived neurons have been established. Stem cell-derived neurons are highly sensitive to BoNT intoxication and represent an ideal model to study the biological effects of BoNTs. Robust immunoassays are used to quantify BoNT activity and play a central role during inhibitor screening. In this review, we examine recent progress in physiologically relevant cell-based assays and high-throughput screening approaches for the identification of both direct and indirect BoNT inhibitors.


Biological Assay/trends , Botulinum Toxins/antagonists & inhibitors , Botulinum Toxins/chemistry , Drug Discovery/trends , Neurons/metabolism , Stem Cells/cytology , Animals , Antitoxins/chemistry , Biomarkers/analysis , Cell Differentiation , Cell Line , Cells, Cultured , Drug Design , Enzyme-Linked Immunosorbent Assay , Humans , Immunoassay , Microscopy, Fluorescence
...