Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Am J Physiol Cell Physiol ; 326(5): C1520-C1542, 2024 May 01.
Article En | MEDLINE | ID: mdl-38557354

Cancer cachexia is the result of complex interorgan interactions initiated by cancer cells and changes in patient behavior such as decreased physical activity and energy intake. Therefore, it is crucial to distinguish between the direct and indirect effects of cancer cells on muscle mass regulation and bioenergetics to identify novel therapeutic targets. In this study, we investigated the direct effects of Colon-26 cancer cells on the molecular regulating machinery of muscle mass and its bioenergetics using a coculture system with C2C12 myotubes. Our results demonstrated that coculture with Colon-26 cells induced myotube atrophy and reduced skeletal muscle protein synthesis and its regulating mechanistic target of rapamycin complex 1 signal transduction. However, we did not observe any activating effects on protein degradation pathways including ubiquitin-proteasome and autophagy-lysosome systems. From a bioenergetic perspective, coculture with Colon-26 cells decreased the complex I-driven, but not complex II-driven, mitochondrial ATP production capacity, while increasing glycolytic enzyme activity and glycolytic metabolites, suggesting a shift in energy metabolism toward glycolysis dominance. Gene expression profiling by RNA sequencing showed that the increased activity of glycolytic enzymes was consistent with changes in gene expression. However, the decreased ATP production capacity of mitochondria was not in line with the gene expression. The potential direct interaction between cancer cells and skeletal muscle cells revealed in this study may contribute to a better fundamental understanding of the complex pathophysiology of cancer cachexia.NEW & NOTEWORTHY We explored the potential direct interplay between colon cancer cells (Colon-26) and skeletal muscle cells (C2C12 myotubes) employing a noncontact coculture experimental model. Our findings reveal that coculturing with Colon-26 cells substantially impairs the protein synthesis rate, concurrently instigating a metabolic shift toward glycolytic dominance in C2C12 myotubes. This research unveils critical insights into the intricate cellular cross talk underpinning the complex pathophysiology of cancer cachexia.


Cachexia , Coculture Techniques , Colonic Neoplasms , Energy Metabolism , Glycolysis , Muscle Fibers, Skeletal , Muscle Fibers, Skeletal/metabolism , Animals , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Mice , Cell Line, Tumor , Cachexia/metabolism , Cachexia/pathology , Protein Biosynthesis , Humans , Signal Transduction , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/biosynthesis
2.
J Physiol ; 602(7): 1313-1340, 2024 Apr.
Article En | MEDLINE | ID: mdl-38513062

High-intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high-intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high-intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase - the rate-limiting enzyme in the TCA cycle - and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high-intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. KEY POINTS: We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high-intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high-intensity exercise. Pairing MCT4 deficiency with high-intensity interval training (HIIT) results in a synergistic boost in high-intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.


High-Intensity Interval Training , Monocarboxylic Acid Transporters , Muscle, Skeletal , Animals , Mice , Lactates , Mice, Inbred ICR , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Pyruvates/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism
3.
Sci Rep ; 14(1): 5848, 2024 03 11.
Article En | MEDLINE | ID: mdl-38462654

Belt electrode-skeletal muscle electrical stimulation (B-SES) involves the use of belt-shaped electrodes to contract multiple muscle groups simultaneously. Twitch contractions have been demonstrated to protect against denervation-induced muscle atrophy in rats, possibly through mitochondrial biosynthesis. This study examined whether inducing tetanus contractions with B-SES suppresses muscle atrophy and identified the underlying molecular mechanisms. We evaluated the effects of acute (60 Hz, 5 min) and chronic (60 Hz, 5 min, every alternate day for one week) B-SES on the tibialis anterior (TA) and gastrocnemius (GAS) muscles in Sprague-Dawley rats using belt electrodes attached to both ankle joints. After acute stimulation, a significant decrease in the glycogen content was observed in the left and right TA and GAS, suggesting that B-SES causes simultaneous contractions in multiple muscle groups. B-SES enhanced p70S6K phosphorylation, an indicator of the mechanistic target of rapamycin complex 1 activity. During chronic stimulations, rats were divided into control (CONT), denervation-induced atrophy (DEN), and DEN + electrically stimulated with B-SES (DEN + ES) groups. After seven days of treatment, the wet weight (n = 8-11 for each group) and muscle fiber cross-sectional area (CSA, n = 6 for each group) of the TA and GAS muscles were reduced in the DEN and DEN + ES groups compared with that in the CON group. The DEN + ES group showed significantly higher muscle weight and CSA than those in the DEN group. Although RNA-seq and pathway analysis suggested that mitochondrial biogenesis is a critical event in this phenomenon, mitochondrial content showed no difference. In contrast, ribosomal RNA 28S and 18S (n = 6) levels in the DEN + ES group were higher than those in the DEN group, even though RNA-seq showed that the ribosome biogenesis pathway was reduced by electrical stimulation. The mRNA levels of the muscle proteolytic molecules atrogin-1 and MuRF1 were significantly higher in DEN than those in CONT. However, they were more suppressed in DEN + ES than those in DEN. In conclusion, tetanic electrical stimulation of both ankles using belt electrodes effectively reduced denervation-induced atrophy in multiple muscle groups. Furthermore, ribosomal biosynthesis plays a vital role in this phenomenon.


Tetanus , Rats , Animals , Rats, Sprague-Dawley , Muscle, Skeletal/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Electric Stimulation , Denervation , Electrodes
4.
Sci Rep ; 12(1): 21275, 2022 12 08.
Article En | MEDLINE | ID: mdl-36481829

Belt electrode skeletal muscle electrical stimulation (B-SES) can simultaneously contract multiple muscle groups. Although the beneficial effects of B-SES in clinical situations have been elucidated, its molecular mechanism remains unknown. In this study, we developed a novel rodent B-SES ankle stimulation system to test whether low-frequency stimulation prevents denervation-induced muscle atrophy. Electrical stimulations (7‒8 Hz, 30 min) with ankle belt electrodes were applied to Sprague-Dawley rats daily for one week. All animals were assigned to the control (CONT), denervation-induced atrophy (DEN), and DEN + electrical stimulation (ES) groups. The tibialis anterior (TA) and gastrocnemius (GAS) muscles were used to examine the effect of ES treatment. After seven daily sessions of continuous stimulation, muscle wet weight (n = 8-11), and muscle fiber cross-sectional area (CSA, n = 4-6) of TA and GAS muscles were lower in DEN and DEN + ES than in CON. However, it was significantly higher in DEN than DEN + ES, showing that ES partially prevented muscle atrophy. PGC-1α, COX-IV, and citrate synthase activities (n = 6) were significantly higher in DEN + ES than in DEN. The mRNA levels of muscle proteolytic molecules, Atrogin-1 and Murf1, were significantly higher in DEN than in CONT, while B-SES significantly suppressed their expression (p < 0.05). In conclusion, low-frequency electrical stimulation of the bilateral ankles using belt electrodes (but not the pad electrodes) is effective in preventing denervation-induced atrophy in multiple muscles, which has not been observed with pad electrodes. Maintaining the mitochondrial quantity and enzyme activity by low-frequency electrical stimulation is key to suppressing muscle protein degradation.


Muscle, Skeletal , Animals , Rats , Electric Stimulation , Muscular Atrophy/prevention & control , Rats, Sprague-Dawley
5.
J Appl Physiol (1985) ; 133(4): 822-833, 2022 10 01.
Article En | MEDLINE | ID: mdl-36007895

Skeletal muscle unloading leads to muscle atrophy. Ribosome synthesis has been implicated as an important skeletal muscle mass regulator owing to its translational capacity. Muscle unloading induces a reduction in ribosome synthesis and content, with muscle atrophy. Percutaneous electrical muscle stimulation (pEMS)-induced muscle contraction is widely used in clinics to improve muscle mass. However, its efficacy in rescuing the reduction in ribosomal synthesis has not been addressed thus far. We examined the effects of daily pEMS treatment on ribosome synthesis and content during mouse hindlimb unloading. Male C57BL/6J mice were randomly assigned to sedentary (SED) and hindlimb unloading by pelvic suspension (HU) groups. Muscle contraction was triggered by pEMS treatment of the right gastrocnemius muscle of a subset of the HU group (HU + pEMS). Hindlimb unloading for 6 days significantly lowered 28S rRNA, rpL10, and rpS3 expression, which was rescued by daily pEMS treatment. The protein expression of phospho-p70S6K and UBF was significantly higher in the HU + pEMS than in the HU group. The mRNA expression of ribophagy receptor Nufip1 increased in both the HU and HU + pEMS groups. Protein light chain 3 (LC3)-II expression and the LC3-II/LC3-I ratio were increased by HU, but pEMS attenuated this increase. Our findings indicate that during HU, daily pEMS treatment prevents the reduction in the levels of some proteins associated with ribosome synthesis. In addition, the HU-induced activation of ribosome degradation may be attenuated. These data provide insights into ribosome content regulation and the mechanism of attenuation of muscle atrophy by pEMS treatment during muscle disuse.NEW & NOTEWORTHY Muscle inactivity reduces ribosome synthesis and content during atrophy. Whether percutaneous electrical muscle stimulation (pEMS)-induced muscle contraction rescues the ribosome synthesis and content during muscle unloading is unclear. Using a mouse hindlimb-unloading model with pelvic suspension, we provide evidence that daily pEMS-induced muscle contraction during hindlimb unloading rescues the reduction in the expression of some ribosome synthesis-related proteins and ribosome content in the gastrocnemius muscle.


Hindlimb Suspension , Ribosomal Protein S6 Kinases, 70-kDa , Animals , Electric Stimulation , Hindlimb/metabolism , Hindlimb Suspension/physiology , Male , Mice , Mice, Inbred C57BL , Muscle Contraction , Muscle, Skeletal/physiology , Muscular Atrophy/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal, 28S/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomes/metabolism
6.
Appl Physiol Nutr Metab ; 47(7): 775-786, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35439425

Aldehyde dehydrogenase (ALDH) is an enzyme that detoxifies aldehydes and is primarily involved in alcohol metabolism. Recently, we have shown that ALDH also plays an important role in skeletal muscle homeostasis. To better understand the role of ALDH in skeletal muscle, it is necessary to clarify the adaptability of ALDH. In this study, we examined the effects of endurance training, compensatory hypertrophy by synergist ablation (SA), and denervation-induced atrophy on gene expression and protein levels of selected ALDH isoforms in skeletal muscle. Ten-week-old C57BL/6J mice were subjected to each intervention, and the plantaris muscle was collected. Gene expression levels of Aldh1a1 were decreased by SA and denervation, but ALDH1A1 protein levels were not affected. Protein levels of ALDH1B1 increased after chronic endurance training, SA, and denervation interventions. However, the increase in Aldh1b1 gene expression was observed only after SA. The gene expression of Aldh2 was decreased after SA, but ALDH2 protein levels remained unchanged. Denervation increased both the Aldh2 gene and ALDH2 protein levels. Taken together, each isoform of ALDH undergoes unique quantitative adaptations in skeletal muscle under different conditions.


Aldehyde Dehydrogenase , Muscle, Skeletal , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Animals , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism
7.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R511-R525, 2022 06 01.
Article En | MEDLINE | ID: mdl-35318866

Aldehyde dehydrogenase 2 (ALDH2) detoxifies acetaldehyde produced from ethanol. A missense single nucleotide polymorphism (SNP) rs671 in ALDH2 exhibits a dominant-negative form of the ALDH2 protein. Nearly 40% of people in East Asia carry an inactive ALDH2*2 mutation. Previous studies reported that ALDH2*2 is associated with increased risk of several diseases. In this study, we examined the effect of ALDH2 deficiency on age-related muscle atrophy and its underlying mechanisms. We found that ALDH2 deficiency promotes age-related loss of muscle fiber cross-sectional areas, especially in oxidative fibers. Furthermore, ALDH2 deficiency exacerbated age-related accumulation of 4-hydroxy-2-nonenal (4-HNE), a marker of oxidative stress in the gastrocnemius muscle. Similarly, mitochondrial reactive oxygen species (ROS) production increased in aged ALDH2-knockout mice, indicating that ALDH2 deficiency induced mitochondrial dysfunction. In summary, ALDH2 deficiency promotes age-related muscle loss, especially in oxidative fibers, which may be associated with an increased accumulation of oxidative stress via mitochondrial dysfunction.


Muscle, Skeletal , Muscular Atrophy , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Animals , Humans , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Reactive Oxygen Species/metabolism
8.
Physiol Rep ; 9(17): e15014, 2021 09.
Article En | MEDLINE | ID: mdl-34523264

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening people's lives and impacting their health. It is still unclear whether people engaged in physical activity are at an increased risk of SARS-CoV-2 infection and severe forms of COVID-19. In order to provide data to help answer this question, we, therefore, investigated the effects of endurance training on the levels of host proteins involved in SARS-CoV-2 infection in mice. Eight-week-old C57BL/6J mice were subjected to treadmill running (17-25 m/min, 60-90 min, 5 sessions/week, 8 weeks). After the intervention, the levels of angiotensin-converting enzyme 2 (ACE2; host receptor for SARS-CoV-2), transmembrane protease serine 2 (TMPRSS2; host protease priming fusion of SARS-CoV-2 to host cell membranes), FURIN (host protease that promotes binding of SARS-CoV-2 to host receptors), and Neuropilin-1 (host coreceptor for SARS-CoV-2) were measured in 10 organs that SARS-CoV-2 can infect (larynx, trachea, lung, heart, jejunum, ileum, colon, liver, kidney, and testis). Six organs (heart, lung, jejunum, liver, trachea, and ileum) showed changes in the levels of at least one of the proteins. Endurance training increased ACE2 levels in heart (+66.4%), lung (+37.1%), jejunum (+24.7%) and liver (+27.4%), and FURIN in liver (+17.9%) tissue. In contrast, endurance training decreased Neuropilin-1 levels in liver (-39.7%), trachea (-41.2%), and ileum (-39.7%), and TMPRSS2 in lung (-11.3%). Taken together, endurance training altered the levels of host proteins involved in SARS-CoV-2 cell entry in an organ-dependent manner.


COVID-19/virology , Physical Conditioning, Animal , Physical Endurance , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/enzymology , Furin/metabolism , Host-Pathogen Interactions , Male , Mice, Inbred C57BL , Neuropilin-1/metabolism , Running , Serine Endopeptidases/metabolism
9.
Exp Physiol ; 106(9): 1950-1960, 2021 09.
Article En | MEDLINE | ID: mdl-34197668

NEW FINDINGS: What is the central question of this study? Is muscle protein synthesis (MPS) additionally activated following exercise when ribosomal capacity is increased after repeated bouts of resistance exercise (RE)? What is the main finding and its importance? Skeletal muscles with increased ribosome content through repeated RE bouts showed sufficient activation of MPS with lower mechanistic target of rapamycin complex 1 signalling. Thus, repeated bouts of RE possibly change the translational capacity and efficiency to optimize translation activation following RE. ABSTRACT: Resistance exercise (RE) activates ribosome biogenesis and increases ribosome content in skeletal muscles. However, it is unclear whether the increase in ribosome content subsequently causes an increase in RE-induced activation of muscle protein synthesis (MPS). Thus, this study aimed to investigate the relationship between ribosome content and MPS after exercise using a rat RE model. Male Sprague-Dawley rats were categorized into three groups (n = 6 for each group): sedentary (SED) and RE trained with one bout (1B) or three bouts (3B). The RE stimulus was applied to the right gastrocnemius muscle by transcutaneous electrical stimulation under isoflurane anaesthesia. The 3B group underwent stimulation every other day. Our results revealed that 6 h after the last bout of RE, muscles in the 3B group showed an increase in total RNA and 18S+28S rRNA content per muscle weight compared with the SED and 1B groups. In both the 1B and 3B groups, MPS, estimated by puromycin incorporation in proteins, was higher than that in the SED group 6 h after exercise; however, no significant difference was observed between the 1B and 3B groups. In the 1B and 3B groups, phosphorylated p70S6K at Thr-389 increased, indicating mechanistic target of rapamycin complex 1 (mTORC1) activity. p70S6K phosphorylation level was lower in the 3B group than in the 1B group. Finally, protein synthesis per ribosome (indicator of translation efficiency) was lower in the 3B group than in the 1B group. Thus, three bouts of RE changed the ribosome content and mTORC1 activation, but not the degree of RE-induced global MPS activation.


Physical Conditioning, Animal , Resistance Training , Animals , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/physiology , Phosphorylation , Physical Conditioning, Animal/physiology , Rats , Rats, Sprague-Dawley , Ribosomes/metabolism
10.
Physiol Rep ; 9(9): e14842, 2021 05.
Article En | MEDLINE | ID: mdl-33991444

Mechanistic target of rapamycin complex 1 (mTORC1) plays a central role in muscle protein synthesis and repeated bouts of resistance exercise (RE) blunt mTORC1 activation. However, the changes in the proteolytic signaling when recurrent RE bouts attenuate mTORC1 activation are unclear. Using a RE model of electrically stimulated rat skeletal muscle, this study aimed to clarify the effect of repeated RE bouts on acute proteolytic signaling, particularly the calpain, autophagy-lysosome, and ubiquitin-proteasome pathway. p70S6K and rpS6 phosphorylation, indicators of mTORC1 activity, were attenuated by repeated RE bouts. Calpain 3 protein was decreased at 6 h post-RE in all exercised groups regardless of the bout number. Microtubule-associated protein 1 light chain 3 beta-II, an indicator of autophagosome formation, was increased at 3 h and repeated RE bouts increased at 6 h, post-RE. Ubiquitinated proteins were increased following RE, but these increases were independent of the number of RE bouts. These results suggest that the magnitude of autophagosome formation was increased following RE when mTORC1 activity was attenuated with repeated bouts of RE.


Muscle Contraction , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/methods , Proteolysis , Signal Transduction , Animals , Autophagosomes/metabolism , Calpain/metabolism , Electric Stimulation , Isoenzymes/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtubule-Associated Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/physiology , Rats , Rats, Sprague-Dawley , Ribosomal Protein S6/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ubiquitination
11.
Am J Physiol Cell Physiol ; 319(6): C1029-C1044, 2020 12 01.
Article En | MEDLINE | ID: mdl-32936700

The contraction of myotubes using electrical pulse stimulation is a research tool used to mimic muscle contractile activity and exercise in rodents and humans. Most protocols employed in previous work used low-frequency twitch contractions. However, high-frequency tetanus contractions that are more physiologically relevant to muscle contractions in vivo are poorly characterized. In this report, the similarities and differences in acute responses and chronic adaptations with different contractile modes using twitches (2 Hz, continuous, 3 h) and tetanus (66 Hz, on: 5 s/off: 5 s, 3 h) were investigated. RNA sequencing-based transcriptome analysis and subsequent bioinformatics analysis suggest that tetanus may promote bioenergetic remodeling rather than twitch. Based on in silico analyses, metabolic remodeling after three contractile sessions of twitch and tetanus were investigated. Although twitch and tetanus had no significant effect on glycolysis, both types of contraction upregulated glucose oxidation capacity. Both twitch and tetanus qualitatively caused mitochondrial adaptations (increased content, respiratory chain enzyme activity, and respiratory function). The magnitude of adaptation was much greater under tetanus conditions. Our findings indicate that the contraction of myotubes by tetanus may be a useful experimental model, especially in the study of metabolic adaptations in C2C12 myotubes.


Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/metabolism , Animals , Cell Line , Electric Stimulation , Gene Expression Profiling , Glucose/metabolism , Glycogen/metabolism , Glycolysis/physiology , Lactic Acid/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Muscle Fibers, Skeletal/metabolism , Oxidation-Reduction , Physical Conditioning, Animal/physiology , Refractory Period, Electrophysiological/physiology , Transcriptome/genetics
12.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R649-R661, 2019 11 01.
Article En | MEDLINE | ID: mdl-31433681

Mechanical unloading impairs cytosolic calcium (Ca2+) homeostasis in skeletal muscles. In this study, we investigated whether sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) itself or one of the regulators of the Ca2+ SERCA pump, sarcolipin (SLN), is altered to deregulate Ca2+ homeostasis in cast immobilized, atrophied muscles. Hindlimb muscles of 8-wk-old male C57BL/6J mice were subjected to bilateral cast immobilization for 2 wk. Two-week-cast immobilization induced both body weight and skeletal muscle loss. Highly phosphorylated Ca2+/calmodulin-dependent protein kinase II in the atrophied muscles suggested that cytosolic Ca2+ concentration was elevated. Extremely high expression levels of SLN mRNA and protein were observed in the atrophied muscles. Upregulation of SLN at the transcriptional level was supported by low RCAN1 expression, which is a negative regulator of SLN. We treated C2C12 cells with dexamethasone to mimic muscle atrophy in vitro and showed a direct relationship between high SLN mRNA expression and low Ca2+ uptake by sarcoplasmic reticulum. Since SLN reportedly plays a role in nonshivering thermogenesis, we performed a cold tolerance test of the whole body. As a result, we found that mice with cast immobilization showed high cold tolerance, suggesting that cast immobilization promoted whole body thermogenesis. Although the activity level was decreased during cast immobilization without change in food intake, adipose tissue weights also decreased significantly after cast immobilization. Concomitantly, we conclude that cast immobilization of hindlimb increased thermogenesis in C57Bl/6J mice, probably via high expression of SLN.


Hindlimb/metabolism , Lower Extremity/physiopathology , Muscle, Skeletal/metabolism , Sarcoplasmic Reticulum/metabolism , Thermogenesis/physiology , Animals , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Mice, Inbred C57BL , Muscular Atrophy/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Transcriptional Activation/physiology
13.
Physiol Rep ; 7(13): e14155, 2019 08.
Article En | MEDLINE | ID: mdl-31250976

Resistance exercise training induces muscle hypertrophy, and recovery between sessions is one of the major determinants of this effect. However, the effect of the recovery period between sessions on muscle hypertrophy following resistance exercise training remains unclear. To elucidate the effect of recovery period on hypertrophy, in the present study, we investigated changes in protein degradation systems and hypertrophic responses in rat skeletal muscle to resistance training with variable recovery periods. In the conventional recovery group (exercised every 72 h) and a shorter recovery group (exercised every 24 h), 18 bouts of resistance exercise consisting of 50 repetitions of a 3-sec maximal isometric contraction caused muscle hypertrophy and slight activation of muscle protein degradation systems. By contrast, in an excessively shorter recovery group (exercised every 8 h), 18 bouts of resistance exercise did not cause hypertrophy and markedly activated protein degradation systems, accompanied by inflammatory responses. These observations indicate that excessive shortening of recovery between sessions does not cause skeletal muscle hypertrophy, likely due to the activation of proteolysis induced by inflammatory responses to resistance exercise training.


Isometric Contraction , Muscle, Skeletal/physiology , Physical Conditioning, Animal/methods , Animals , Hypertrophy/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Proteolysis , Rats , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/metabolism
14.
J Appl Physiol (1985) ; 126(6): 1673-1680, 2019 06 01.
Article En | MEDLINE | ID: mdl-30998122

Ribosome biogenesis has been implicated in resistance exercise training (RET)-induced skeletal muscle hypertrophy. However, it is unclear how increasing bouts of RET affects ribosome content and biogenesis. This was investigated in the present study using simulated RET where rat skeletal muscle is subjected to increasing bouts of electrical stimulation. Sprague-Dawley rats were randomly assigned to the following seven groups: sedentary for 5 days (SED) or 6 wk (SED_6w), resistance-exercise trained with 1 bout (1B), 2 bouts (2B), 3 bouts (3B), 6 bouts (6B), and 18 bouts (18B). RET was simulated on the right gastrocnemius muscle by transcutaneous electric stimulation under isoflurane anesthesia, and a RET bout was given 3 times a week. Rats in 1B, 2B, and 3B groups showed increased 45S precursor (pre-) rRNA and 18S+28S rRNA content per muscle weight and elevated mRNA levels of c-myc and upstream binding factor (UBF). Increases in phosphorylated UBF and total cyclin D1 protein level were observed 48 h after RET; the former increased as a function of RET duration. In 3B, 6B, and 18B groups, the 18S+28S rRNA content per muscle weight was kept unchanged, and 45S pre-rRNA, cyclin D1, and phosphorylated UBF levels in 18B were lower than those in 3B. These results suggest that RET activates ribosome biogenesis and increases ribosome content through modulation of UBF and cyclin D1 activity at its early phase. Additional bouts of RET may not lead to a further increase in ribosome content per muscle weight through possibly the attenuation of transcription process. NEW & NOTEWORTHY Ribosome biogenesis has been implicated in resistance exercise training-induced skeletal muscle hypertrophy. However, it remains unclear how this is influenced by the volume of repeated bouts of resistance exercise training. Using resistance exercise training model with rat skeletal muscle, we provide evidence that ribosome biogenesis is stimulated by the initial few bouts of resistance exercise training with no additional effect of further increase in the exercise bout.


Muscle, Skeletal/physiology , Ribosomes/physiology , Animals , Electric Stimulation/methods , Male , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , RNA, Ribosomal/metabolism , Rats , Rats, Sprague-Dawley , Resistance Training/methods , Ribosomes/metabolism
...