Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Eur J Pharmacol ; 960: 176166, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37898288

Ulcerative colitis (UC) is one of the most common subtypes of inflammatory bowel disease (IBD) that affects the colon and is characterized by severe intestinal inflammation. Canagliflozin is a widely used antihyperglycemic agent, a sodium-glucose cotransporter-2 (SGLT2) inhibitor that enhances urinary glucose excretion. This study aims to provide insights into the potential benefits of canagliflozin as a treatment for UC by addressing possible cellular signals. Acetic acid (AA; 4% v/v) was administered intrarectally to induce colitis. Canagliflozin is given orally at a dose of 10 mg/kg/day. Canagliflozin attenuates inflammation in AA-induced colitis, evidenced by significant and dose-dependently downregulation of p38 MAPK, NF-κB-p65, IKK, IRF3, and NADPH-oxidase as well as colonic levels of IL-6 and IL-1ß and MPO enzymatic activity. Canagliflozin mitigates colonic oxidative stress by decreasing MDA content and restoring SOD enzymatic activities and GSH levels mediated by co-activating of Nrf2, PPARγ, and SIRT1 pathways. Moreover, an in-silico study confirmed that canagliflozin was specific to all target proteins in this study. Canagliflozin's binding affinity with its target proteins indicates and confirms its effectiveness in regulating these pathways. Also, network pharmacology analysis supported that canagliflozin potently attenuates UC via a multi-target and multi-pathway approach.


Colitis, Ulcerative , NF-kappa B , Humans , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon/metabolism , Glucose/metabolism , Inflammation/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , PPAR gamma/metabolism , Signal Transduction , Sirtuin 1/metabolism , Toll-Like Receptor 4/metabolism
2.
Life Sci ; 311(Pt A): 121180, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36370869

Methotrexate (MTX) is a well-known and widely used cytotoxic chemotherapeutic agent. However, intestinal mucosa damage is a serious adverse effect of MTX. Taurine (TUR) is a sulfur-containing free ß-amino acid with antioxidant and therapeutic value against several diseases. The current study aimed to determine the protective effect of TUR against MTX-induced intestinal injury. Rats were allocated into four groups. The first group received vehicles only. The second group received TUR at a dose of 250 mg/kg i.p. For induction of intestinal injury, the rats in the third group were given MTX once at a dose of 20 mg/kg, i.p. The fourth group received TUR 7 days before and 7 days after MTX, as previously described. TUR significantly attenuated the cytokine release by suppressing NF-κB and iNOS expressions. Moreover, cotreatment with TUR attenuated the increased MDA level while it enhanced the antioxidant GSH and SOD levels mediated by effective downregulation of Keap1 expression, while the expression of Nrf2, HO-1, and cytoglobin were up-regulated. Additionally, TUR mitigated the apoptosis and proliferation indices by decreasing the elevated levels of intestinal PCNA and caspase-3. Finally, TUR potently increased the cytotoxic activity of MTX toward Caco-2, MCF-7, and A549 cancer cells. In conclusion, TUR was a promising agent for relieving MTX-mediated intestinal injury via various antioxidant, anti-inflammatory, and antiapoptotic mechanisms.


NF-E2-Related Factor 2 , NF-kappa B , Animals , Humans , Rats , Antioxidants/pharmacology , Caco-2 Cells , Kelch-Like ECH-Associated Protein 1/metabolism , Methotrexate/pharmacology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Signal Transduction , Taurine/pharmacology
3.
Bioorg Chem ; 116: 105272, 2021 11.
Article En | MEDLINE | ID: mdl-34474305

Hypertension has been recognized as one of the most frequent comorbidities and risk factors for the seriousness and adverse consequences in COVID-19 patients. 3,4-dihydropyrimidin-2(1H) ones have attracted researchers to be synthesized via Beginilli reaction and evaluate their antihypertensive activities as bioisosteres of nifedipine a well-known calcium channel blocker. In this study, we report synthesis of some bioisosteres of pyrimidines as novel CCBs with potential ACE2 inhibitory effect as antihypertensive agents with protective effect against COVID-19 infection by suppression of ACE2 binding to SARS-CoV-2 Spike RBD. All compounds were evaluated for their antihypertensive and calcium channel blocking activities using nifedipine as a reference standard. Furthermore, they were screened for their ACE2 inhibition potential in addition to their anti-inflammatory effects on LPS-stimulated THP-1 cells. Most of the tested compounds exhibited significant antihypertensive activity, where compounds 7a, 8a and 9a exhibited the highest activity compared to nifedipine. Moreover, compounds 4a,b, 5a,b, 7a,b, 8a,c and 9a showed promising ACE2:SARS-CoV-2 Spike RBD inhibitory effect. Finally, compounds 5a, 7b and 9a exerted a promising anti-inflammatory effect by inhibition of CRP and IL-6 production. Ultimately, compound 9a may be a promising antihypertensive candidate with anti-inflammatory and potential efficacy against COVID-19 via ACE2 receptor inhibition.


Angiotensin-Converting Enzyme Inhibitors/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antihypertensive Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Calcium Channel Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Angiotensin-Converting Enzyme Inhibitors/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Humans , SARS-CoV-2/drug effects
4.
BMC Complement Med Ther ; 20(1): 290, 2020 Sep 23.
Article En | MEDLINE | ID: mdl-32967670

BACKGROUND: Diabetes and its related complications remain to be a major clinical problem. We aim to investigate the antidiabetic mechanistic actions of Plicosepalus Acaciae (PA) flowers in streptozotocin (STZ)-induced diabetic rats. METHODS: After diabetes induction, rats were divided randomly into five groups, including: 1) normal control group, 2) diabetic control group, 3) diabetic group treated with 150 mg/kg of ethanolic extract of PA flowers, 4) diabetic group treated with 300 mg/kg of ethanolic extract of PA flowers, and 5) diabetic group treated with 150 mg/kg of metformin. After 15 days of treatment; fasting blood glucose, glycated hemoglobin (HBA1c%), insulin, C-peptide, superoxide dismutase (SOD), catalase, reduced glutathione (GSH), malondialdehyde (MDA), triglyceride (TGs), total cholesterol (Tc), low density lipoprotein cholesterol (LDL-c), very LDL (VLDL), high DLc (HDL-c), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels were assessed. Histopathology of pancreas was also assessed. RESULTS: The results showed that PA flower ethanolic extract significantly reduced blood glucose, HBA1c%, MDA, TGs, Tc, VLDL, LDL-c, TNF-α, and IL-6 levels in a dose-dependent manner. All these parameters were already increased by diabetic induction in the untreated diabetic group. Treatment of diabetic rats with PA flower increased insulin, HDL-c, GSH, catalase, and SOD levels. Histological examination showed that the PA flower caused reconstruction, repair, and recovery of damaged pancreas when compared with the untreated group. CONCLUSIONS: PA flower has a potential role in the management of diabetes as complementary and alternative therapy, due to its antioxidant, anti-inflammatory, hypolipidemic, hypoglycemic and insulin secretagogue effects.


Complementary Therapies/methods , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Loranthaceae , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Disease Models, Animal , Female , Flowers , Hypolipidemic Agents/pharmacology , Male , Rats , Rats, Wistar , Streptozocin , Yemen
5.
Article En | MEDLINE | ID: mdl-29922226

The etiology of vitiligo is still unclear. The aim is to investigate a neural and hormonal etio-pathology of vitiligo. Sixty acrofacial vitiligo patients were divided into two subgroups as active vitiligo patients group (AVPs; n = 35) and stable vitiligo patients group (SVP; n = 25). Forty healthy subjects without any systemic or dermatological disease were used as controls. Blood samples were collected, and the samples were used for measurement of free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), cortisol, estrogen, testosterone, melatonin, and prolactin levels by ELISA, while norepinephrine (NE), epinephrine (Epi), dopamine (DA), homo-vanillic acid (HVA), serotonin, and 5-hydroxyindoleacetic acid (5-HIAA) by high-pressure liquid chromatography. The current results showed a significant increase in plasma levels of Epi, NE, DA, HVA, serotonin, 5-HIAA, melatonin, and in serum level of TSH and prolactin either in SVP or AVP groups than the control group and in AVP than SVP group. The serum levels of fT3 and fT4 were significantly decreased either in SVP or AVP groups than the control group. A significant increase in estradiol levels was observed in females within AVP than females in either SVP or control groups. There was a significant increase in serum level of cortisol in AVP than either SVP or control group. There was a significant decrease in serum level of ACTH in either AVP or SVP than control and in AVP than SVP group. In conclusion, there are some neural and endocrine markers that play a pivotal role in pathogenesis and/or consequences of vitiligo. The abnormally disturbed levels of theses markers lead to melanocyte destruction and/or depigmentation.

6.
Neuropsychiatr Dis Treat ; 11: 1067-76, 2015.
Article En | MEDLINE | ID: mdl-25926735

BACKGROUND: The current study's aim is to evaluate the possible interaction effects of khat chewing on treatment of paranoid schizophrenic patients. PATIENTS AND METHODS: In the study group, 42 male subjects suffered from paranoid schizophrenia and were classified according to their khat chewing habits into two subgroups: either khat-chewer subgroup (SKc; n=21; r=11, h=10) or non-khat-chewer subgroup (SNKc; n=21, r=11, h=10). Each subgroup was further subdivided according to type of treatment into r (risperidone) and h (haloperidol). Healthy male subjects (37) were subdivided into healthy khat-chewer as positive controls (HKc, n=17) and healthy non-khat-chewer as negative controls (HNKc, n=20). Plasma dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid, 5-hydroxytryptamine (serotonin), 5-hydroxyindoleacetic acid, epinephrine, and norepinephrine were estimated. RESULTS: ANOVA and post hoc analysis showed that dopamine was illustrating significant elevation in all khat chewing groups. DOPAC was illustrating significant decrease in all khat chewing groups with an interesting outcome showing significant increase in DOPAC in SNKcr group due to risperidone effect. Homovanillic acid, serotonin, hydroxyindoleacetic acid, and norepinephrine were illustrating significant elevations in all khat chewing groups. Epinephrine was illustrating significant elevation in all chewers than non-chewers groups. Unexpected significant decrease in epinephrine in the SNKcr group indicated that risperidone drug is decreasing epinephrine through indirect mechanism involving calcium. CONCLUSION: Khat chewing in schizophrenic patients is contraindicated because it aggravates the disease symptoms, attenuates all used treatment medications, and deteriorates all biochemical markers of the patients.

...