Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 492: 1-13, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36162553

RESUMEN

The exocyst complex is an important regulator of intracellular trafficking and tethers secretory vesicles to the plasma membrane. Understanding of its role in neuron outgrowth remains incomplete, and previous studies have come to different conclusions about its importance for axon and dendrite growth, particularly in vivo. To investigate exocyst function in vivo we used Drosophila sensory neurons as a model system. To bypass early developmental requirements in other cell types, we used neuron-specific RNAi to target seven exocyst subunits. Initial neuronal development proceeded normally in these backgrounds, however, we considered this could be due to residual exocyst function. To probe neuronal growth capacity at later times after RNAi initiation, we used laser microsurgery to remove axons or dendrites and prompt regrowth. Exocyst subunit RNAi reduced axon regeneration, although new axons could be specified. In control neurons, a vesicle trafficking marker often concentrated in the new axon, but this pattern was disrupted in Sec6 RNAi neurons. Dendrite regeneration was also severely reduced by exocyst RNAi, even though the trafficking marker did not accumulate in a strongly polarized manner during normal dendrite regeneration. The requirement for the exocyst was not limited to injury contexts as exocyst subunit RNAi eliminated dendrite regrowth after developmental pruning. We conclude that the exocyst is required for injury-induced and developmental neurite outgrowth, but that residual protein function can easily mask this requirement.


Asunto(s)
Axones , Exocitosis , Exocitosis/fisiología , Neuritas , Regeneración Nerviosa , Membrana Celular/metabolismo
2.
Dev Biol ; 488: 114-119, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644253

RESUMEN

Axon regeneration in response to injury has been documented in many animals over several hundred years. In contrast, how neurons respond to dendrite injury has been examined only in the last decade. So far, dendrite regeneration after injury has been documented in invertebrate model systems, but has not been assayed in a vertebrate. In this study, we use zebrafish motor neurons to track neurons after dendrite injury. We address two major gaps in our knowledge of dendrite regeneration: 1) whether post-synaptic dendrites can regenerate and 2) whether vertebrate dendrites can regenerate. We find that motor neurons survive laser microsurgery to remove one or all dendrites. Outgrowth of new dendrites typically initiated one to three days after injury, and a new, stable dendrite arbor was in place by five days after injury. We conclude that zebrafish motor neurons have the capacity to regenerate a new dendrite arbor.


Asunto(s)
Dendritas , Regeneración de la Medula Espinal , Animales , Axones , Dendritas/fisiología , Neuronas Motoras , Regeneración Nerviosa/fisiología , Médula Espinal , Pez Cebra
3.
J Cell Sci ; 134(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34096607

RESUMEN

Axons and dendrites are distinguished by microtubule polarity. In Drosophila, dendrites are dominated by minus-end-out microtubules, whereas axons contain plus-end-out microtubules. Local nucleation in dendrites generates microtubules in both orientations. To understand why dendritic nucleation does not disrupt polarity, we used live imaging to analyze the fate of microtubules generated at branch points. We found that they had different rates of success exiting the branch based on orientation: correctly oriented minus-end-out microtubules succeeded in leaving about twice as often as incorrectly oriented microtubules. Increased success relied on other microtubules in a parallel orientation. From a candidate screen, we identified Trim9 and kinesin-5 (Klp61F) as machinery that promoted growth of new microtubules. In S2 cells, Eb1 recruited Trim9 to microtubules. Klp61F promoted microtubule growth in vitro and in vivo, and could recruit Trim9 in S2 cells. In summary, the data argue that Trim9 and kinesin-5 act together at microtubule plus ends to help polymerizing microtubules parallel to pre-existing ones resist catastrophe.


Asunto(s)
Polaridad Celular , Dendritas , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Polimerizacion
4.
J Exp Biol ; 223(Pt 21)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32968001

RESUMEN

The centralized nervous systems of bilaterian animals rely on directional signaling facilitated by polarized neurons with specialized axons and dendrites. It is not known whether axo-dendritic polarity is exclusive to bilaterians or was already present in early metazoans. We therefore examined neurite polarity in the starlet sea anemone Nematostella vectensis (Cnidaria). Cnidarians form a sister clade to bilaterians and share many neuronal building blocks characteristic of bilaterians, including channels, receptors and synaptic proteins, but their nervous systems comprise a comparatively simple net distributed throughout the body. We developed a tool kit of fluorescent polarity markers for live imaging analysis of polarity in an identified neuron type, large ganglion cells of the body column nerve net that express the LWamide-like neuropeptide. Microtubule polarity differs in bilaterian axons and dendrites, and this in part underlies polarized distribution of cargo to the two types of processes. However, in LWamide-like+ neurons, all neurites had axon-like microtubule polarity suggesting that they may have similar contents. Indeed, presynaptic and postsynaptic markers trafficked to all neurites and accumulated at varicosities where neurites from different neurons often crossed, suggesting the presence of bidirectional synaptic contacts. Furthermore, we could not identify a diffusion barrier in the plasma membrane of any of the neurites like the axon initial segment barrier that separates the axonal and somatodendritic compartments in bilaterian neurons. We conclude that at least one type of neuron in Nematostella vectensis lacks the axo-dendritic polarity characteristic of bilaterian neurons.


Asunto(s)
Anémonas de Mar , Animales , Axones , Citoesqueleto , Microtúbulos , Neuronas
5.
PLoS Biol ; 18(3): e3000647, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32163403

RESUMEN

Dendrite microtubules are polarized with minus-end-out orientation in Drosophila neurons. Nucleation sites concentrate at dendrite branch points, but how they localize is not known. Using Drosophila, we found that canonical Wnt signaling proteins regulate localization of the core nucleation protein γTubulin (γTub). Reduction of frizzleds (fz), arrow (low-density lipoprotein receptor-related protein [LRP] 5/6), dishevelled (dsh), casein kinase Iγ, G proteins, and Axin reduced γTub-green fluorescent protein (GFP) at branch points, and two functional readouts of dendritic nucleation confirmed a role for Wnt signaling proteins. Both dsh and Axin localized to branch points, with dsh upstream of Axin. Moreover, tethering Axin to mitochondria was sufficient to recruit ectopic γTub-GFP and increase microtubule dynamics in dendrites. At dendrite branch points, Axin and dsh colocalized with early endosomal marker Rab5, and new microtubule growth initiated at puncta marked with fz, dsh, Axin, and Rab5. We propose that in dendrites, canonical Wnt signaling proteins are housed on early endosomes and recruit nucleation sites to branch points.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Endosomas/metabolismo , Microtúbulos/metabolismo , Proteínas Wnt/metabolismo , Animales , Complejo de Señalización de la Axina/genética , Complejo de Señalización de la Axina/metabolismo , Axones/metabolismo , Polaridad Celular , Dendritas/genética , Drosophila , Proteínas de Drosophila/genética , Endosomas/genética , Microtúbulos/genética , Mutación , Receptores Wnt/genética , Receptores Wnt/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas Wnt/genética , Vía de Señalización Wnt/genética , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
6.
Methods Mol Biol ; 780: 427-41, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21870276

RESUMEN

PARylation is a posttranslational protein modification carried out by PAR polymerases (PARPs). These enzymes function as ADP-ribose transferases that add polymers of ADP-ribose (PAR) to target proteins. PARP proteins have critical functions impacting the aspects of normal human health, such as aging, as well as disease development, particularly cancer. Recently, the powerful antitumor PARP inhibitor Olaparib was shown to be effective in blocking the progression of BRCA1/2-associated tumors, prompting Bruce Alberts to call for an expansion of cancer research beyond utilization of cancer cell lines to include model organisms, such as bacteria, yeast, worms, flies, and mice. Although Dr. Alberts did not specifically mention the filamentous fungus Neurospora crassa, it is now known that Neurospora is the only genetically tractable model eukaryote with completely dispensable PARylation. PARylation in Neurospora can be entirely eliminated by disruption of a single predicted ORF, encoding a nuclear localized PARP protein termed Neurospora PARP ortholog (NPO). We, thus, present this initial genetic characterization of PARylation in N. crassa as evidence of the supreme advantage of using Neurospora as a tool for the genetic dissection of PARP and PARylation and emphasize the power of this system to advance unparalleled contributions to knowledge in this field.


Asunto(s)
Neurospora crassa/genética , Neurospora crassa/metabolismo , Electroporación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Neurospora crassa/enzimología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo
7.
Fungal Genet Biol ; 47(4): 297-309, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20045739

RESUMEN

Modification of proteins by the addition of poly(ADP-ribose) is carried out by poly(ADP-ribose) polymerases (PARPs). PARPs have been implicated in a wide range of biological processes in eukaryotes, but no universal function has been established. A study of the Aspergillus nidulans PARP ortholog (PrpA) revealed that the protein is essential and involved in DNA repair, reminiscent of findings using mammalian systems. We found that a Neurospora PARP orthologue (NPO) is dispensable for cell survival, DNA repair and epigenetic silencing but that replicative aging of mycelia is accelerated in an npo mutant strain. We propose that PARPs may control aging as proposed for Sirtuins, which also consume NAD+ and function either as mono(ADP-ribose) transferases or protein deacetylases. PARPs may regulate aging by impacting NAD+/NAM availability, thereby influencing Sirtuin activity, or they may function in alternative NAD+-dependent or NAD+-independent aging pathways.


Asunto(s)
Replicación del ADN , ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/enzimología , Neurospora crassa/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Hongos/química , ADN de Hongos/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Datos de Secuencia Molecular , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasas/deficiencia , Análisis de Secuencia de ADN , Sirtuinas/metabolismo
8.
Epigenetics Chromatin ; 1(1): 5, 2008 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19014414

RESUMEN

BACKGROUND: Silencing of genes inserted near telomeres provides a model to investigate the function of heterochromatin. We initiated a study of telomeric silencing in Neurospora crassa, a fungus that sports DNA methylation, unlike most other organisms in which telomeric silencing has been characterized. RESULTS: The selectable marker, hph, was inserted at the subtelomere of Linkage Group VR in an nst-1 (neurospora sir two-1) mutant and was silenced when nst-1 function was restored. We show that NST-1 is an H4-specific histone deacetylase. A second marker, bar, tested at two other subtelomeres, was similarly sensitive to nst-1 function. Mutation of three additional SIR2 homologues, nst-2, nst-3 and nst-5, partially relieved silencing. Two genes showed stronger effects: dim-5, which encodes a histone H3 K9 methyltransferase and hpo, which encodes heterochromatin protein-1. Subtelomeres showed variable, but generally low, levels of DNA methylation. Elimination of DNA methylation caused partial derepression of one telomeric marker. Characterization of histone modifications at subtelomeric regions revealed H3 trimethyl-K9, H3 trimethyl-K27, and H4 trimethyl-K20 enrichment. These modifications were slightly reduced when telomeric silencing was compromised. In contrast, acetylation of histones H3 and H4 increased. CONCLUSION: We demonstrate the presence of telomeric silencing in Neurospora and show a dependence on histone deacetylases and methylation of histone H3 lysine 9. Our studies also reveal silencing functions for DIM-5 and HP1 that appear independent of their role in de novo DNA methylation.

10.
Nature ; 422(6934): 859-68, 2003 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-12712197

RESUMEN

Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.


Asunto(s)
Genes Fúngicos/genética , Genoma Fúngico , Neurospora crassa/genética , Señalización del Calcio/genética , Metilación de ADN , Diterpenos/metabolismo , Evolución Molecular , Duplicación de Gen , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Complejos Multienzimáticos/genética , Familia de Multigenes/genética , Mutagénesis/genética , Neurospora crassa/citología , Neurospora crassa/enzimología , Neurospora crassa/metabolismo , Enfermedades de las Plantas/microbiología , Interferencia de ARN , ARN Ribosómico/genética , Receptores de Superficie Celular/genética , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Transducción de Señal/genética
11.
Proc Natl Acad Sci U S A ; 99 Suppl 4: 16485-90, 2002 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-12189210

RESUMEN

One can imagine a variety of mechanisms that should result in self-perpetuating biological states. It is generally assumed that cytosine methylation is propagated in eukaryotes by enzymes that specifically methylate hemimethylated symmetrical sites (e.g., (5')CpGGpC(5') or (5')CpNpGGpNpC(5')). Although there is wide support for this model, we and others have found examples of methylation that must be propagated by a different mechanism. Most methylated regions of the Neurospora genome that have been examined are products of repeat-induced point mutation, a premeiotic genome defense system that litters duplicated sequences with C.G to T.A mutations and typically leaves them methylated at remaining cytosines. In general, such relics of repeat-induced point mutation are capable of triggering methylation de novo. Nevertheless, some reflect a mechanism that can propagate heterogeneous methylation at nonsymmetrical sites. We propose that de novo and maintenance methylation are manifestations of a single mechanism in Neurospora, catalyzed by the DIM-2 DNA methyltransferase. The action of DIM-2 is controlled by the DIM-5 histone H3 Lys-9 methyltransferase, which in turn is influenced by other modifications of histone H3. DNA methylation indirectly recruits histone deacetylases, providing the framework of a self-reinforcing system that could result in propagation of DNA methylation and the associated silenced chromatin state.


Asunto(s)
Metilación de ADN , N-Metiltransferasa de Histona-Lisina , Neurospora/genética , ADN de Hongos , Histona Desacetilasas/metabolismo , Histona Metiltransferasas , Histonas/metabolismo , Metiltransferasas/metabolismo , Neurospora/enzimología , Neurospora/metabolismo , Proteína Metiltransferasas
12.
Proc Natl Acad Sci U S A ; 99(13): 8802-7, 2002 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-12072568

RESUMEN

During sexual development, Neurospora crassa inactivates genes in duplicated DNA segments by a hypermutation process, repeat-induced point mutation (RIP). RIP introduces C:G to T:A transition mutations and creates targets for subsequent DNA methylation in vegetative tissue. The mechanism of RIP and its relationship to DNA methylation are not fully understood. Mutations in DIM-2, a DNA methyltransferase (DMT) responsible for all known cytosine methylation in Neurospora, does not prevent RIP. We used RIP to disrupt a second putative DMT gene in the Neurospora genome and tested mutants for defects in DNA methylation and RIP. No effect on DNA methylation was detected in the tissues that could be assayed, but the mutants showed recessive defects in RIP. Duplications of the am and mtr genes were completely stable in crosses homozygous for the mutated potential DMT gene, which we call rid (RIP defective). The same duplications were inactivated normally in heterozygous crosses. Disruption of the rid gene did not noticeably affect fertility, growth, or development. In contrast, crosses homozygous for a mutation in a related gene in Ascobolus immersus, masc1, reportedly fail to develop and heterozygous crosses reduce methylation induced premeiotically [Malagnac, F., Wendel, B., Goyon, C., Faugeron, G., Zickler, D., et al. (1997) Cell 91, 281-290]. We isolated homologues of rid from Neurospora tetrasperma and Neurospora intermedia to identify conserved regions. Homologues possess all motifs characteristic of eukaryotic DMTs and have large distinctive C- and N-terminal domains.


Asunto(s)
ADN-Citosina Metilasas/fisiología , Neurospora crassa/genética , Mutación Puntual , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Heterocigoto , Homocigoto , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...