Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576378

RESUMEN

This short critical review is devoted to the synthesis and functionalization of various types of azaacenes, organic semiconducting compounds which can be considered as promising materials for the fabrication of n-channel or ambipolar field effect transistors (FETs), components of active layers in light emitting diodes (LEDs), components of organic memory devices and others. Emphasis is put on the diversity of azaacenes preparation methods and the possibility of tuning their redox and spectroscopic properties by changing the C/N ratio, modifying the nitrogen atoms distribution mode, functionalization with electroaccepting or electrodonating groups and changing their molecular shape. Processability, structural features and degradation pathways of these compounds are also discussed. A unique feature of this review concerns the listed redox potentials of all discussed compounds which were normalized vs. Fc/Fc+. This required, in frequent cases, recalculation of the originally reported data in which these potentials were determined against different types of reference electrodes. The same applied to all reported electron affinities (EAs). EA values calculated using different methods were recalculated by applying the method of Sworakowski and co-workers (Org. Electron. 2016, 33, 300-310) to yield, for the first time, a set of normalized data, which could be directly compared.

2.
Langmuir ; 36(49): 15048-15063, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33271019

RESUMEN

Spectroscopic, electrochemical, and structural properties of 2,6-dialkoxy-9,10-anthraquinones (Anth-OCn, n = 4, 6, 8, 10, and 12) of increasing alkoxy substituents length were investigated. UV-vis spectroscopy showed a substitution-induced bathochromic shift of the least energetic band from 325 nm in the case of unsubstituted anthraquinone to ca. 350 nm for the studied derivatives. Similarly as unsubstituted anthraquinone, the studied compound showed two reversible one electron reductions to a radical anion and spinless anions, respectively. The first reduction was affected by electron-donating properties of the substituents, its potential being shifted to ca. -1.5 V (vs Fc/Fc+), i.e., by 80 to 95 mV as compared to the case of unsubstituted anthraquinone. This corresponded to a decrease of |EA| from 3.27 to 3.19-3.17 eV. The experimental spectroscopic and electrochemical data were in full agreement with the DFT calculations. The introduction of the alkoxy substituent improved solution processibility of the studied compounds and facilitated the formation of their ordered supramolecular 2D aggregation on HOPG as well as single crystal growth from solutions. Comparative structural investigations carried out on single crystals and monolayers deposited on HOPG revealed two, mutually related, effects of the substituent length on the resulting supramolecular organization. The first one concerns both the 2D organization in the monolayers and 3D molecular arrangement in crystals: increasing substituent length evolution of the structure occurs from herringbone-type to lamellar. The second effect, observed in monolayers of the derivatives with longer substituents, concerns gradual evolution of their lamellar structures with increasing substituent length. This evolution is induced by the structure of the graphite substrate and involves increasing correlation of the molecules orientation (anthraquinone cores as well as alkoxy substituents) with the symmetry of the graphite substrate. As a result, their 2D and 3D structures become dissimilar.

3.
Inorg Chem ; 59(19): 14594-14604, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32941018

RESUMEN

A semiconducting molecule containing a thiol anchor group, namely 2-(5-mercaptothien-2-yl)-8-(thien-2-yl)-5-hexylthieno[3,4-c]pyrrole-4,6-dione (abbreviated as D-A-D-SH), was designed, synthesized, and used as a ligand in nonstoichiometric quaternary nanocrystals of composition Ag1.0In3.1Zn1.0S4.0(S6.1) to give an inorganic/organic hybrid. Detailed NMR studies indicate that D-A-D-SH ligands are present in two coordination spheres in the organic part of the hybrid: (i) inner in which the ligand molecules form direct bonds with the nanocrystal surface and (ii) outer in which the ligand molecules do not form direct bonds with the inorganic core. Exchange of the initial ligands (stearic acid and 1-aminooctadecane) for D-A-D-SH induces a distinct change of the photoluminescence. Efficient red luminescence of nanocrystals capped with initial ligands (λmax = 720 nm, quantum yield = 67%) is totally quenched and green luminescence characteristic of the ligand appears (λmax = 508 nm, quantum yield = 10%). This change of the photoluminescence mechanism can be clarified by a combination of electrochemical and spectroscopic investigations. It can be demonstrated by cyclic voltammetry that new states appear in the hybrid as a consequence of D-A-D-SH binding to the nanocrystals surface. These states are located below the nanocrystal LUMO and above its HOMO, respectively. They are concurrent to deeper donor and acceptor states governing the red luminescence. As a result, energy transfer from the nanocrystal HOMO and LUMO levels to the ligand states takes place, leading to effective quenching of the red luminescence and appearance of the green one.

4.
Langmuir ; 36(19): 5417-5427, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32340450

RESUMEN

Self-organization in mono- and bilayers on HOPG of two groups of benz[5,6]acridino[2,1,9,8-klmna]acridine derivatives, namely, 8,16-dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines with an increasing alkoxy substituent length and 8,16-bis(3- or 4- or 5-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines, i.e., three positional isomers of the same benzoacridine, is investigated by scanning tunneling microscopy. The layers were deposited from a solution of the adsorbate (in hexane or dichloromethane) and imaged ex situ at molecular resolution. In all cases, the resulting two-dimensional (2D) supramolecular organization is governed by the interactions between large, fused heteroaromatic cores that form densely packed rows separated by areas covered by substituents. In 8,16-dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines, the alkoxy substituents, separating the rows of densely packed cores, are interdigitated. An increasing substituent length leads to an intuitively expected increase in this 2D unit cell parameter that corresponds to the orientation of the substituent in the monolayer. In the case of 8,16-bis(3- or 4- or 5-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine positional isomers, the self-assembly processes are more complex. Although the determined 2D unit cell is in all cases essentially the same, the role of alkylthienylene substituents in layer formation is distinctly different. Thus, the formation of monolayers and bilayers is very sensitive to isomerism. 8,16-Bis(5-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine is capable of forming the most stable monolayer and the most labile bilayer. In the case of 8,16-bis(3-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine, an inverse phenomenon is observed leading to the most labile monolayer and the most stable bilayer. These differences are rationalized in terms of dissimilar molecular geometries of the studied isomers and different interdigitation patterns in their 2D supramolecular structures.

5.
Inorg Chem ; 58(2): 1358-1370, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30607944

RESUMEN

The presented research is focused on the synthesis of alloyed Ag-In-Zn-S colloidal nanocrystals from a mixture of simple metal precursors such as AgNO3, InCl3, zinc stearate combined with 1-dodecanethiol (DDT), 1-octadecene (ODE), and sulfur dissolved in oleylamine (OLA). In particular, the focus is on the effect of the solvent (ODE vs 1,2-dichlorobenzene (DCB)) and the type of sulfur precursor (S/OLA vs S/ n-octylamine (OCA)) on the metal precursors reactivates and on the chemical composition, crystal structure, and luminescent properties of the resulting nanocrystals. The replacement of ODE by DCB as a solvent lowers the reactivity of metal precursors and results in a 3-fold decrease of the photoluminescence quantum yields (Q.Y.) values (from 67% to 21%). This negative effect can be fully compensated by the use of S/OCA as a source of sulfur instead of S/OLA (Q.Y. increases from 21% to 64%). NMR studies of the isolated organic phase indicate that the S/OLA precursor generates two types of ligands being products of ( Z)-1-amino-9-octadecene (OLA) hydrogenation. These are "surface bound" 1-aminooctadecane (C18H37NH2) and crystal bound, i.e., alkyl chain covalently bound to the nanocrystal surface via surfacial sulfur (C18H37-NH-S crystal). Highly luminescent Ag-In-Zn-S nanocrystals exhibit a cation-enriched (predominantly indium) surface and are stabilized by a 1-aminooctadecane ligand, which shows more flexibility than OLA. These investigations were completed by hydrophilization of nanocrystals obtained via exchange of the primary ligands for 11-mercaptoundecanoic acid, (MUA) with only a 2-fold decrease of photoluminescence Q.Y. in the most successful case (from 67% to 31%). Finally, through ligand exchange, an electroactive inorganic/organic hybrid was obtained, namely, Ag-In-Zn-S/7-octyloxyphenazine-2-thiol, in which its organic part fully retained its electrochemical activity.

6.
Phys Chem Chem Phys ; 19(2): 1217-1228, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27959369

RESUMEN

Ternary Ag-In-S or quaternary Ag-In-Zn-S nanocrystals were prepared from simple precursors (silver nitrate, indium(iii) chloride, zinc stearate in a mixture of DDT and ODE) by injecting a solution of elemental sulfur into OLA. Ternary nanocrystals were modified by depositing either a ZnS or a CdS shell, yielding type I and type II core/shell systems exhibiting photoluminescence QY in the range of 12-16%. Careful optimization of the reaction conditions allowed alloyed quaternary Ag-In-Zn-S nanocrystals exhibiting tunable photoluminescence in the spectral range of 520-720 nm with a QY of 48% and 59% for green and red radiations, respectively, to be obtained. 1H NMR analysis of the nanocrystal organic shell, after dissolution of its inorganic core, indicated that surfacial sulfur atoms were covalently bonded to aliphatic chains whereas surfacial cations were coordinated by amines and carboxylate anions. No thiol-type ligands were detected. Transfer of the prepared nanocrystals to water could be achieved in one step by exchanging the initial ligands for 11-mercaptoundecanoic ones resulting in a QY value of 31%. A new Ag-In-Zn-S nanocrystal preparation method was elaborated in which indium and zinc salts of fatty acids were used as cation precursors and DDT was replaced by thioacetamide. This original DDT-free method enabled similar tuning of the photoluminescence properties of the nanocrystals as in the previous method; however the measured photoluminescence QYs were three times lower. Hence, further optimization of the new method is required.

7.
Chemistry ; 22(33): 11795-806, 2016 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-27404332

RESUMEN

Star-shaped conjugated molecules, consisting of a benzene central unit symmetrically trisubstituted with either oxa- or thiadiazole bithiophene groups, were synthesized as promising molecules and building blocks for application in (opto)electronics and electrochromic devices. Their optical (Eg (opt)) as well as electrochemical (Eg (electro)) band gaps depended on the type of the side arm and the number of solubilizing alkyl substituents. Oxadiazole derivatives showed Eg (opt) slightly below 3 eV and by 0.2 eV larger than those determined for thiadiazole-based compounds. The presence of alkyl substituents in the arms additionally lowered the band gap. The obtained compounds were efficient electroluminophores in guest/host-type light-emitting diodes. They also showed a strong tendency to self-organize in monolayers deposited on graphite, as evidenced by scanning tunneling microscopy. The structural studies by X-ray scattering revealed the formation of supramolecular columnar stacks in which the molecules were organized. Differences in macroscopic alignment in the specimen indicated variations in the self-assembly mechanism between the molecules. The compounds as trifunctional monomers were electrochemically polymerized to yield the corresponding polymer network. As shown by UV/Vis-NIR spectroelectrochemical studies, these networks exhibited reversible electrochromic behavior both in the oxidation and in the reduction modes.

8.
Phys Chem Chem Phys ; 18(22): 15091-101, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27197089

RESUMEN

It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface.

9.
Chemistry ; 22(23): 7978-86, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27106658

RESUMEN

Simple modification of benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine-8,16-dione, an old and almost-forgotten vat dye, by reduction of its carbonyl groups and subsequent O-alkylation, yields solution-processable, electroactive, conjugated compounds of the periazaacene type, suitable for the use in organic electronics. Their electrochemically determined ionization potential and electron affinity of about 5.2 and -3.2 eV, respectively, are essentially independent of the length of the alkoxyl substituent and in good agreement with DFT calculations. The crystal structure of 8,16-dioctyloxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine (FC-8), the most promising compound, was solved. It crystallizes in space group P1‾ and forms π-stacked columns held together in the 3D structure by dispersion forces, mainly between interdigitated alkyl chains. Molecules of FC-8 have a strong tendency to self-organize in monolayers deposited on a highly oriented pyrolytic graphite surface, as observed by STM. 8,16-Dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines are highly luminescent, and all have photoluminescence quantum yields of about 80 %. They show efficient electroluminescence, and can be used as guest molecules with a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl host in guest/host-type organic light-emitting diodes. The best fabricated diodes showed a luminance of about 1900 cd m(-12) , a luminance efficiency of about 3 cd A(-1) , and external quantum efficiencies exceeding 0.9 %.

10.
Phys Chem Chem Phys ; 16(42): 23082-8, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25252174

RESUMEN

Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.

11.
Chem Commun (Camb) ; 50(78): 11543-6, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25133516

RESUMEN

Indanthrone, an old, insoluble dye can be converted into a solution processable, self-assembling and electroluminescent organic semiconductor, namely tetraoctyloxydinaptho[2,3-a:2',3'-h]phenazine (P-C8), in a simple one-pot process consisting of the reduction of the carbonyl group by sodium dithionite followed by the substitution with solubility inducing groups under phase transfer catalysis conditions.

12.
Langmuir ; 29(47): 14503-11, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24228736

RESUMEN

Scanning tunneling microscopy was used to study the effect of the electron-accepting unit and the alkyl substituent's position on the type and extent of 2D supramolecular organization of penta-ring donor-acceptor-donor (DAD) semiconductors, consisting of either tetrazine or thiadiazole central acceptor ring symmetrically attached to two bithienyl groups. Microscopic observations of monomolecular layers on HOPG of four alkyl derivatives of the studied adsorbates indicate significant differences in their 2D organizations. Ordered monolayers of thiadiazole derivatives are relatively loose and, independent of the position of alkyl substituents, characterized by large intermolecular separation of acceptor units in the adjacent molecules located in the face-to-face configuration. The 2D supramolecular architecture in both derivatives of thiadiazole is very sensitive to the alkyl substituent's position. Significantly different behavior is observed for derivatives of tetrazine (which is a stronger electron acceptor). Stronger intermolecular DA interactions in these adsorbates generate an intermolecular shift in the monolayer, which is a dominant factor determining the 2D structural organization. As a consequence of this molecular arrangement, tetrazine groups (A segments) face thiophene rings (D segments) of the neighboring molecules. Monolayers of tetrazine derivatives are therefore much more densely packed and characterized by similar π-stacking of molecules independently of the position of alkyl substituents. Moreover, a comparative study of 3D supramolecular organization, deduced from the X-ray diffraction patterns, is also presented clearly confirming the polymorphism of the studied adsorbates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...