Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(10)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100899

RESUMEN

In geotechnical engineering seepage of diaphragm walls is an important issue which may cause engineering disasters. It is therefore of great significance to develop reliable monitoring technology to monitor the leakage. The purpose of this study is to explore the application of a distributed optical fiber temperature measurement system in leakage monitoring of underground diaphragm walls using 1 g model tests. The principles of seepage monitoring based on distributed optical fiber temperature measurement technology are introduced. Fiber with heating cable was laid along the wall to control seepage flow at different speeds. The temperature rise of the fiber during seepage was also recorded under different heating power conditions. In particular the effect of single variables (seepage velocity and heating power) on the temperature rise of optical fibers was discussed. Test results indicated that the temperature difference between the seepage and non-seepage parts of diaphragm wall can be monitored well using fiber-optic external heating cable. Higher heating power also can improve the resolution of fiber-optic seepage. The seepage velocity had a linear relationship with the final stable temperature after heating, and the linear correlation coefficient increases with the increase of heating power. The stable temperature decreased with the increase of flow velocity. The findings provide a basis for quantitative measurement and precise location of seepage velocity of diaphragm walls.

2.
Sensors (Basel) ; 19(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925714

RESUMEN

Glass fiber-reinforced polymer (GFRP) bolts have been widely used in some applications of grouted anchors because of the advantages of better resistance to corrosion, high strength-to-weight ratio, low electromagnetic properties, and so on. This study presents a field test to assess the feasibility of fiber Bragg grating (FBG) sensors in monitoring the stress profile of GFRP anchors during pulling test. Two GFRP anchors were fully instrumented with FBG sensors and then installed into the ground using a drilling and grouting method. To measure the stress profile along test anchors, seven bare FBG sensors were arranged in a single optical fiber and then embedded in the middle of GFRP bolts in the process of extrusion molding. The procedure for embedding bare FBG sensors into GFRP bolts is introduced first. Then, the axial forces and shear stresses that were calculated from the measurements of the FBG sensors are discussed. The field test results indicate that the embedded FBG technology was feasible to monitor the stress state of GFRP anchors during pulling.

3.
Sensors (Basel) ; 18(12)2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30513747

RESUMEN

The behavior of open-ended pipe piles is different from that of closed-ended pipe piles due to the soil plugging effect. In this study, a series of field tests were conducted to investigate the behavior of open-ended prestressed high-strength concrete (PHC) pipe piles installed into clay. Two open-ended PHC pipe piles were instrumented with Fiber Bragg Grating (FBG) sensors and jacked into clay for subsequent static loading tests. Soil plug length of the test piles was continuously measured during installation, allowing for calculation of the incremental filling ratio. The recorded data in static loading test were reported and analyzed. The distribution of residual forces after installation and the effect on the bearing capacity were also discussed in detail. The test piles were observed to be in partially plugged condition during installation. The measured ultimate shaft resistance and total resistance of the test piles were 639 and 1180 kN, respectively. The residual forces locked in the test piles after installation significantly affected the evaluation of the axial forces, and thus the shaft and end resistances. It tended to underestimate the end resistances and overestimate the shaft resistances if the residual forces were not considered in the loading test. However, the residual forces did not affect the total bearing capacity of open-ended PHC pipe piles in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...