Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nat Commun ; 15(1): 2883, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570487

Deuterium/Tritium (D/T) handling in defined proportions are pivotal to maintain steady-state operation for fusion reactors. However, the hydrogen isotope effect in metal-hydrogen systems always disturbs precise D/T ratio control. Here, we reveal the dominance of kinetic isotope effect during desorption. To reconcile the thermodynamic stability and isotope effect, we demonstrate a quantitative indicator of Tgap and further a local coordination design strategy that comprises thermodynamic destabilization with vibration enhancement of interstitial isotopes for isotope engineering. Based on theoretical screening analysis, an optimized Ti-Pd co-doped Zr0.8Ti0.2Co0.8Pd0.2 alloy is designed and prepared. Compared to ZrCo alloy, the optimal alloy enables consistent isotope delivery together with a three-fold lower Tgap, a five-fold lower energy barrier difference, a one-third lower isotopic composition deviation during desorption and an over two-fold higher cycling capacity. This work provides insights into the interaction between alloy and hydrogen isotopes, thus opening up feasible approaches to support high-performance fusion reactors.

2.
Article En | MEDLINE | ID: mdl-35844153

Monitoring conductivity changes of discontinuous palladium (Pd) nanostructures upon hydrogenation is becoming one of the most promising approaches toward hydrogen sensing. Development of sensors in this type has long been impeded due to strong ubiquitous interfacial adhesion which could distinctly restrict Pd expansion so as to hinder the closing of a nanogap. Herein, graphene underlayers were applied in the fabrication of nanogap-based hydrogen sensors to promote the lateral expansion of a Pd nanowire upon hydrogenation by reducing the adhesion between the metal and the substrate. In order to clarify details as well as mechanisms underlaid of graphene-enhanced Pd expansion, nanowire samples with serial lengths (6-48 µm) and gaps (0-260 nm in width) were controllably prepared on single-layer graphene (SLG), double-layer graphene (DLG), and quadruple-layer graphene (QLG, DLG × 2) via the combination of electron beam lithography (EBL) and electron beam deposition (EBD) technology. Response features and intrinsic analysis in physical sense of the graphene-based discontinuous Pd circuits upon hydrogen were established, in light of which the effects of underlayers on Pd expansion and on nanogap closing process were investigated. Such graphene-promoted expansion was demonstrated through the achievement of the closure of a large gap threshold (Gt) up to 260 nm as well as the systematical investigation of its influence on the sensing performance.

3.
Scanning ; 2018: 5736742, 2018.
Article En | MEDLINE | ID: mdl-29721128

The effects of ball milling on the hydrogen sorption kinetics and microstructure of Zr0.8Ti0.2Co have been systematically studied. Kinetic measurements show that the hydrogenation rate and amount of Zr0.8Ti0.2Co decrease with increasing the ball milling time. However, the dehydrogenation rate accelerates as the ball milling time increases. Meanwhile, the disproportionation of Zr0.8Ti0.2Co speeds up after ball milling and the disproportionation kinetics is clearly inclined to be linear with time at 500°C. It is found from X-ray powder diffraction (XRD) results that the lattice parameter of Zr0.8Ti0.2Co gradually decreases from 3.164 Å to 3.153 Å when the ball milling time extends from 0 h to 8 h, which is mainly responsible for the hydrogen absorption/desorption behaviors. In addition, scanning electron microscope (SEM) images demonstrate that the morphology of Zr0.8Ti0.2Co has obviously changed after ball milling, which is closely related to the hydrogen absorption kinetics. Besides, high-resolution transmission electron microscopy (HRTEM) images show that a large number of disordered microstructures including amorphous regions and defects exist after ball milling, which also play an important role in hydrogen sorption performances. This work will provide some insights into the principles of how to further improve the hydrogen sorption kinetics and disproportionation property of Zr0.8Ti0.2Co.

...