Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 191: 114707, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059958

RESUMEN

Citri Reticulatae Pericarpium (CRP) is a traditional herbal and food spice, the flavor and active compounds content of Xinhui CRP improves with aging. To investigate the pattern of microbial community succession during the aging of Xinhui CRP and its correlation with changes in flavor compounds, the high-throughput sequencing, HPLC, and GC-IMS were used to analyze the microbial community, flavonoids, and flavor compounds of five different aging years in this study. The results revealed different dominant microbial communities in Xinhui CRP at different aging time, and unclassified Bacteria were the predominant bacterial genus during 10-15 years of aging. As the aging time increases, the abundance of microbial community decreases and gradually stabilizes. At the fungal genus level, Xeromyces (>99 %) were the dominant genus during the 10-15 years aging time and had a significant correlation with polymethoxyflavones (PMFs), and the concentrations of PMFs increased with the progression of aging years. The GC-IMS results revealed distinctive flavor profiles in Xinhui CRP across different aging years, floral and fruity aromas, such as heptanal, 3-methyl-3-butenol, and 1-butanol, among others, with increasing aging years. A comprehensive correlation analysis further elucidates the close relationship between the core microorganism community and flavor formation in Xinhui CRP (p < 0.05). Notably, Pseudomonas and Escherichia Shigella exhibited significant correlations with beta-pinene and alpha-pinene, whereas Aureobasidium and Sarcopodium were associated with nerol and α-phellandrene (p < 0.05). This study provides new ideas for accelerating the good quality and flavor of Xinhui CRP during the aging process from the perspective of key microorganisms.


Asunto(s)
Bacterias , Citrus , Microbiota , Citrus/microbiología , Citrus/química , Bacterias/clasificación , Bacterias/metabolismo , Frutas/microbiología , Frutas/química , Aromatizantes/análisis , Gusto , Compuestos Orgánicos Volátiles/análisis , Flavonoides/análisis , Odorantes/análisis , Hongos/clasificación , Cromatografía Líquida de Alta Presión , Factores de Tiempo , Monoterpenos Bicíclicos
2.
Int J Biol Macromol ; 272(Pt 1): 132738, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825269

RESUMEN

Piperine (PIP) has been known for its pharmacological activities with low water solubility and poor dissolution, which limits its nutritional application. The purpose of this research was to enhance PIP stability, dispersibility and biological activity by preparing PIP nanoparticles using the wet-media milling approach combined with nanosuspension solidification methods of spray/freeze drying. Octenyl succinic anhydride (OSA)-modified waxy maize starch was applied as the stabilizer to suppress aggregation of PIP nanoparticles. The particle size, redispersibility, storage stability and in vitro release behavior of PIP nanoparticles were measured. The regulating effect on adipocyte differentiation was evaluated using 3T3-L1 cell model. Results showed that PIP nanoparticles had a reduced particle size of 60 ± 1 nm, increased release rate in the simulated gastric (SGF) and intestinal fluids (SIF) and enhanced inhibition effect on adipogenesis in 3T3-L1 cells compared with free PIP, indicating that PIP-loaded nanoparticles with improved stability and anti-adipogenic property were developed successfully by combining wet-media milling and drying methods.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Alcaloides , Benzodioxoles , Nanopartículas , Piperidinas , Alcamidas Poliinsaturadas , Almidón , Animales , Ratones , Nanopartículas/química , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/farmacología , Benzodioxoles/farmacología , Benzodioxoles/química , Piperidinas/farmacología , Piperidinas/química , Adipogénesis/efectos de los fármacos , Alcaloides/química , Alcaloides/farmacología , Adipocitos/efectos de los fármacos , Almidón/química , Almidón/análogos & derivados , Tamaño de la Partícula , Liberación de Fármacos , Diferenciación Celular/efectos de los fármacos
3.
Food Chem ; 457: 140160, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917569

RESUMEN

The dynamic combination of aromas and cyclodextrins is an important means to achieve their stability and controllability, and accurately revealing their interaction rules is the key to designing and constructing high-quality aroma nanocarriers. In this study, the inclusion mechanism between alcohol aroma compounds with different structures and ß-cyclodextrin (ß-CD) was studied by combining molecular dynamics simulation and experimental methods. Results showed that the selected alcohol aroma compounds formed inclusion complexes (ICs) with ß-CD in a 1:1 ratio, while alcohol aroma compounds containing cyclic structures were more tightly bound to ß-CD. Van der Waals forces were the primary forces driving the formation and stabilization of the ICs. Cinnamyl alcohol/ß-CD ICs showed the most significant antimicrobial effect and notably prolonged the shelf life of strawberries. This study aimed to provide theoretical support for precisely designing and preparing highly stable flavours and fragrances, as well as expanding their application range.


Asunto(s)
Fragaria , Odorantes , beta-Ciclodextrinas , Fragaria/química , beta-Ciclodextrinas/química , Odorantes/análisis , Conservación de Alimentos/métodos , Alcoholes/química , Simulación de Dinámica Molecular , Aromatizantes/química , Bacterias/efectos de los fármacos , Bacterias/química
4.
Int J Biol Macromol ; 267(Pt 2): 131495, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614180

RESUMEN

Konjac glucomannan (KGM) is becoming a very potential food packaging material due to its good film-forming properties and stability. However, KGM film has several shortcomings such as low mechanical strength, strong water absorption, and poor self-antibacterial performance, which limits its application. Therefore, in order to enhance the mechanical and functional properties of KGM film, this study prepared Pickering nanoemulsion loaded with eugenol and added it to the KGM matrix to explore the improvement effect of Pickering nanoemulsion on KGM film properties. Compared to pure KGM film and eugenol directly added film, the mechanical strength of Pickering-KGM film was significantly improved due to the establishment of ample hydrogen bonding interactions between the ß-cyclodextrin inclusion complex system and KGM. Pickering-KGM film had significant antioxidant capacity than pure KGM film and eugenol directly added KGM film (eugenol-KGM film) (~3.21 times better than KGM film, ~0.51 times better than eugenol-KGM film). In terms of antibacterial activity, Pickering-KGM film had good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Candida albicans, and raspberry preservation experiment showed that the shelf life of the Pickering-KGM film could be extended to about 6 days. To sum up, this study developed a novel means to improve the film performance and provide a new insight for the development and application of food packaging film.


Asunto(s)
Emulsiones , Eugenol , Embalaje de Alimentos , Mananos , Eugenol/química , Eugenol/farmacología , Mananos/química , Emulsiones/química , Embalaje de Alimentos/métodos , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Candida albicans/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
5.
Foods ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38472834

RESUMEN

The daylily (Hemerocallis citrina Baroni) flower is a traditional raw food material that is rich in a variety of nutrients. In particular, the content of polysaccharides in daylily is abundant and has been widely used as a functional component in food, cosmetics, medicine, and other industries. However, studies on the structure-effective relationship of daylily flower polysaccharides are still lacking. In view of this, daylily flower polysaccharides were isolated and purified, and their physical and chemical properties, structure, antioxidant activity, and adhesion-promoting effect on probiotics were evaluated. The results showed that a novel water-soluble polysaccharide (DPW) with an average molecular weight (Mw) of 2.224 kDa could be successfully isolated using column chromatography. Monosaccharide composition analysis showed that DPW only comprised glucose and fructose, with a molar ratio of 0.242:0.758. Through methylation and nuclear magnetic resonance (NMR) analysis, it was inferred that DPW belonged to the fructans group with a structure of α-D-Glcp-1→2-ß-D-Fruf-1→(2-ß-D-Fruf-1)n→. Antioxidant analysis showed that DPW showed strong 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-Oxide (PTIO-scavenging activity with IC50 of 1.54 mg/mL. DPW of 1.25 to 5 mg/mL could significantly increase the adhesion rate of Lactobacillus acidophilu, Lactobacillus casei, Bifidobacterium adolescentis, and Lactobacillus plantarum on Caco-2 cells. Considering the above results, the present study provides a theoretical basis and practical support for the development and application of daylily polysaccharides as a functional active ingredient.

6.
Food Chem ; 444: 138751, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38412567

RESUMEN

Previous lipase inhibitors studies mainly focus on the binding between inhibitors and lipase, ignoring the impact of inhibitors on the oil-water interface of lipid droplets. This study aimed to investigate the effect of nobiletin (NBT) from Citri Reticulatae Pericarpium on the oil-water interface properties and lipid digestion. Here, we found that NBT could destroy bile salt (BS)-stabilized lipid droplets and thus inhibited free fatty acid release, owing to the interaction between NBT and BS at the oil-water interface, and reducing the stability of the oil-water interface (the stability index decreased from 91.15 ± 2.6 % to 66.5 ± 3.6 %). Further, the molecular dynamics simulation and isothermal titration calorimetry revealed that NBT could combine with BS at oil-water interface through intermolecular interactions, including hydrogen bonds, Van der Waals force, and steric hindrance. These results suggest that the interfacial instability of NBT mediated BS emulsified oil droplets may be another pathway to inhibit lipid digestion.


Asunto(s)
Ácidos y Sales Biliares , Flavonas , Lipasa , Emulsiones/química , Lipasa/metabolismo , Ácidos Grasos no Esterificados , Digestión , Agua/química
7.
Int J Biol Macromol ; 253(Pt 2): 126563, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37657584

RESUMEN

Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.


Asunto(s)
Antiinfecciosos , Nanofibras , Antibacterianos/farmacología , Antibacterianos/química , Nanofibras/química , Odorantes , Biopolímeros , Proteínas , Antiinfecciosos/farmacología , Polisacáridos
8.
Int J Biol Macromol ; 247: 125732, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37423446

RESUMEN

Creaming could be generated during storage of the starch-based Pickering emulsions. And cellulose nanocrystals in the solution are usually dispersed by relatively strong mechanical force, otherwise they may appear in the form of aggregates. In this work, we investigated the effects of cellulose nanocrystals on the stability of the starch-based Pickering emulsions. Results showed that the stability of Pickering emulsions was significantly improved by adding cellulose nanocrystals. Cellulose nanocrystals increased the viscosity, electrostatic repulsion and steric hindrance of the emulsions, which delayed the movement of droplets and obstructed the contact between droplets. This study provides new insights into the preparation and stabilisation of starch-based Pickering emulsions.


Asunto(s)
Celulosa , Nanopartículas , Emulsiones/química , Celulosa/química , Almidón , Nanopartículas/química , Agua/química , Tamaño de la Partícula
9.
Front Nutr ; 10: 1161232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032777

RESUMEN

ß-Cyclodextrin (ß-CD) can combine with oil and other guest molecules to form amphiphilic inclusion complexes (ICs), which can be adsorbed on the oil-water interface to reduce the interfacial tension and stabilize Pickering emulsions. However, the subtle change of ß-CD in the process of emulsion preparation is easily ignored. In this study, ß-CD and ginger oil (GO) were used to prepare the Pickering emulsion by high-speed shearing homogenization without an exogenous emulsifier. The stability of the emulsion was characterized by microscopic observation, staining analysis, and creaming index (CI). Results showed that the flocculation of the obtained Pickering emulsion was serious, and the surface of the droplets was rough with lamellar particles. In order to elucidate the formation process of the layered particles, the GO/ß-CD ICs were further prepared by ball milling method, and the X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and interfacial tension analyses found that ß-CD and GO first formed amphiphilic nanoscale small particles (ICs) through the host-guest interaction, and the formed small particles were further self-assembled into lamellar micron-scale amphiphilic ICs microcrystals. These amphiphilic ICs and microcrystals aggregated at the oil-water interface and finally formed the Pickering emulsion. In this study, by exploring the formation process and evolution of GO/ß-CD self-assembly, the formation process and stabilization mechanism of the ß-CD-stabilized GO Pickering emulsion were clarified preliminarily, with the aim of providing a theoretical basis for the development of high-performance CD-stabilized Pickering emulsions.

10.
J Agric Food Chem ; 71(18): 6789-6802, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37102791

RESUMEN

Flavor molecules are commonly used in the food industry to enhance product quality and consumer experiences but are associated with potential human health risks, highlighting the need for safer alternatives. To address these health-associated challenges and promote reasonable application, several databases for flavor molecules have been constructed. However, no existing studies have comprehensively summarized these data resources according to quality, focused fields, and potential gaps. Here, we systematically summarized 25 flavor molecule databases published within the last 20 years and revealed that data inaccessibility, untimely updates, and nonstandard flavor descriptions are the main limitations of current studies. We examined the development of computational approaches (e.g., machine learning and molecular simulation) for the identification of novel flavor molecules and discussed their major challenges regarding throughput, model interpretability, and the lack of gold-standard data sets for equitable model evaluation. Additionally, we discussed future strategies for the mining and designing of novel flavor molecules based on multi-omics and artificial intelligence to provide a new foundation for flavor science research.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Simulación por Computador , Bases de Datos de Compuestos Químicos , Bases de Datos Factuales
11.
Curr Res Food Sci ; 6: 100468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891545

RESUMEN

The Internet contains a wealth of public opinion on food safety, including views on food adulteration, food-borne diseases, agricultural pollution, irregular food distribution, and food production issues. To systematically collect and analyze public opinion on food safety in Greater China, we developed IFoodCloud, which automatically collects data from more than 3,100 public sources. Meanwhile, we constructed sentiment classification models using multiple lexicon-based and machine learning-based algorithms integrated with IFoodCloud that provide an unprecedented rapid means of understanding the public sentiment toward specific food safety incidents. Our best model's F1 score achieved 0.9737, demonstrating its great predictive ability and robustness. Using IFoodCloud, we analyzed public sentiment on food safety in Greater China and the changing trend of public opinion at the early stage of the 2019 Coronavirus Disease pandemic, demonstrating the potential of big data and machine learning for promoting risk communication and decision-making.

12.
Molecules ; 28(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36770786

RESUMEN

Agglomeration is an undesirable phenomenon that often occurs in spray-dried microcapsules powder. The objective of this work is to determine the best solution for spray-dried hydroxypropyl-ß-cyclodextrin (HP-ß-CD) microcapsules from four anticaking agents, namely calcium stearate (CaSt), magnesium stearate (MgSt), silicon dioxide (SiO2), and mannitol (MAN), and to explore their anticaking mechanisms. Our results showed that MAN was found to be the superior anticaking agent among those tested. When the MAN ratio is 12%, the microcapsules with a special Xanthium-type shape had higher powder flowability and lower hygroscopicity and exhibited good anticaking properties. Mechanism research revealed that CaSt, MgSt, and SiO2 reduce hygroscopicity and caking by increasing the glass transition temperature of the microcapsules, while MAN prevents the hydroxyl group of HP-ß-CD from combining with water molecules in the air by a crystal outer-layer on the microcapsule surface.

13.
Carbohydr Polym ; 308: 120661, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813345

RESUMEN

Fragrance finishing of textiles is receiving substantial interest, with aromatherapy being one of the most popular aspects of personal health care. However, the longevity of aroma on textiles and presence after subsequent launderings are major concerns for aromatic textiles directly loaded with essential oils. These drawbacks can be weakened by incorporating essential oil-complexed ß-cyclodextrins (ß-CDs) onto various textiles. This article reviews various preparation methods of aromatic ß-cyclodextrin nano/microcapsules, as well as a wide variety of methods for the preparation of aromatic textiles based on them before and after forming, proposing future trends in preparation processes. The review also covers the complexation of ß-CDs with essential oils, and the application of aromatic textiles based on ß-CD nano/microcapsules. Systematic research on the preparation of aromatic textiles facilitates the realization of green and simple industrialized large-scale production, providing needed application potential in the fields of various functional materials.

14.
Front Nutr ; 9: 1039753, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36424928

RESUMEN

Eugenol has been used in dietary interventions for metabolic diseases such as diabetes and obesity. However, the protective effect of eugenol on muscle function in diabetes is unclear. In this study, a high-fat diet (HFD) with a streptozocin (STZ) injection induced type II diabetes mellitus in a mouse model. Oral eugenol lowered blood glucose and insulin resistance of HFD/STZ-treated mice. Eugenol reduced HFD/STZ-induced muscle inflammation and prevented muscle weakness and atrophy. Eugenol administration significantly increased GLUT4 translocation and AMPK phosphorylation in skeletal muscle, thereby enhancing glucose uptake. By silencing the transient receptor potential vanilloid channel 1 (TRPV1) gene in C2C12 myotube cells, eugenol was found to increase intracellular Ca2+ levels through TRPV1, which then activated calmodulin-dependent protein kinase-2 (CaMKK2) and affected AMPK protein phosphorylation. In conclusion, eugenol is a potential nutraceutical for preventing high-glucose-induced muscle impairments, which could be explained by its mediating effects on glucose absorption and inflammatory responses in the muscle.

15.
Colloids Surf B Biointerfaces ; 220: 112888, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183634

RESUMEN

Metal-phenolic networks (MPNs), which are formed by phenolic molecules and metal ions via coordination bonds, are emerging as highly templated functional metal-organic materials. These networks are mostly used in the form of particles for short-term in vivo drug delivery; however, there is a lack of research on durable and stable MPN hollow particles as delivery carriers for in vitro applications. In this study, hollow and yolk-like hybrid cubic MPNs were prepared by etching zeolitic imidazolate framework-8 (ZIF-8) with proanthocyanidins (PCs). Polydopamine (PDA) resulting from the oxidative self-polymerisation of dopamine was deposited on the surface of the fabricated MPN to obtain a PDA coating, which enhanced the mechanical properties of the MPN. The prepared ZnII-PC/PDA capsules consisted of two layers: a ZnII-PC layer and a PDA-PDA layer. It showed stability at 25 â„ƒ for at least 280 days after freeze-drying. Moreover, when loaded with carvacrol, this MPN exhibited an enhanced antibacterial performance. Therefore, this study lays the foundation for the use of MPNs as long-lasting functional carriers.


Asunto(s)
Proantocianidinas , Indoles/química , Metales/química , Excipientes , Zinc
16.
Int J Biol Macromol ; 200: 1-11, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968544

RESUMEN

In the work, a novel filamentou sodium alginate (SA) /ε-polylysine (PL) fiber with excellent mechanical properties and controllable sizes is prepared in an efficient and environmentally friendly manner via continuous pulling of an electrostatically assembled SA/PL composites at the contact interface of aqueous solutions of cationic polyelectrolyte ε-PL and anionic natural polysaccharide SA. The SA/PL fiber exhibits good antibacterial activity, low cytotoxicity, anti-hemolysis, bioadhesion, and environmental friendliness due to its natural raw materials and green preparation process. In vivo experiments have shown that the SA/PL fiber can promote the healing and repair of skin wounds on the backs of mice via resistance to pathogen infection, reduction of inflammation, and anti-allogeneic allergy of the wound. In summary, these results demonstrate that the SA/PL fiber is a green and biosafe multifunctional natural polymer material, with potential applications in suturing wound.


Asunto(s)
Alginatos , Polilisina/análogos & derivados
17.
Food Res Int ; 148: 110592, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507737

RESUMEN

5-Demethylnobiletin (5-DMN), identified in the aged citrus peels, has received increasing attentions due to its outstanding bioactivity among citrus polymethoxyflavones (PMFs). However, the poor water solubility and high crystallinity limit its oral bioavailability. Besides, the solubility of 5-DMN in the oil is very limited, which restricts its loading capacity in emulsions for bioavailability enhancement. In this study, an organogel formulation was developed to improve the solubility of 5-DMN in medium-chain triacylglycerols by 3.5 times higher without crystal formation during 5-day storage at room temperature. Increasing the gelator (i.e., sugar ester) concentration led to the increase of viscosity and a gel-like structure of the organogel. The ternary phase diagram of organogel-based emulsions was explored, and 40% organogel was selected as the oil phase for emulsion preparation. Increasing the concentration of Tween 80 from 0% to 6% decreased the droplet size and viscoelasticity of the emulsions. Two in vitro models, the pH-stat lipolysis model and TNO gastro-intestinal model (TIM-1), were applied to investigate the bioaccessibility of 5-DMN in different delivery systems. Compared with the conventional emulsion and oil suspension, the pH-stat lipolysis demonstrated that the organogel-based emulsion was the most efficient tool to enhance 5-DMN bioacccessibility. Moreover, TIM-1 digestive study indicated that 5-DMN bioaccessibility delivered by organogel-based emulsions was about 3.26-fold higher than that of oil suspension. Our results suggested that the organogel-based emulsion was an effective delivery route to enhance the loading and bioaccessibility of lipophilic compounds of high crystallinity.


Asunto(s)
Flavonas , Disponibilidad Biológica , Emulsiones , Solubilidad
18.
Carbohydr Polym ; 269: 118292, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294318

RESUMEN

Cyclodextrins (CDs) are edible and biocompatible natural cyclic compounds that can encapsulate essential oils, flavours, volatile aroma compounds, and other substances. Complexation with CD-based materials improves the solubility and stability of volatile compounds and protects the bioactivity of the core materials. Therefore, the development of CD/volatile compound nanosystems is a key research area in the food, cosmetic, and pharmaceutical industries. This review briefly introduces the main types of natural CD; preparation methods of CD-based materials as carriers for aromatic substances or essential oils; characterisation methods used to calculate the interaction between CDs and volatile aroma compounds; molecular docking and simulation methods; and the application of CD-based nanosystems in different industries. The review aims to provide guidance for relevant practitioners in selecting appropriate CD materials and characterisation methods.

19.
Molecules ; 26(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067007

RESUMEN

As film-forming agents, fillers and adsorbents, microplastics are often added to daily personal care products. Because of their chemical stability, they remain in the environment for thousands of years, endangering the safety of the environment and human health. Therefore, it is urgent to find an environmentally friendly substitute for microplastics. Using n-octyltrimethoxysilane (OTMS) and tetraethoxysilane (TEOS) as silicon sources, a novel, environmentally friendly, organic hollow mesoporous silica system is designed with a high loading capacity and excellent adsorption characteristics in this work. In our methodology, sandalwood essential oil (SEO) was successfully loaded into the nanoparticle cavities, and was involved in the formation of Pickering emulsion as well, with a content of up to 40% (w/w). The developed system was a stable carrier for the dispersion of SEO in water. This system can not only overcome the shortcomings of poor water solubility and volatility of sandalwood essential oil, but also act as a microplastic substitute with broad prospects in the cosmetics and personal care industry, laying a foundation for the preparation and applications of high loading capacity microcapsules in aqueous media.


Asunto(s)
Portadores de Fármacos/química , Aceites Volátiles/química , Compuestos Orgánicos/química , Aceites de Plantas/química , Sesquiterpenos/química , Dióxido de Silicio/química , Cápsulas , Emulsiones , Espectroscopía de Fotoelectrones , Porosidad , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Vibración , Agua/química
20.
Int J Biol Macromol ; 183: 743-752, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33901558

RESUMEN

Essential oil products are often volatile, and their aromas cannot be effectively preserved over long periods of time. In this study, nanocellulose crystals were modified, and an amphiphilic copolymer was prepared by ring-opening polymerisation to produce wall materials. A nanocellulose crystal-grafted polylactic acid copolymer was successfully synthesised and characterised using nuclear magnetic resonance spectrometry, Fourier transform infrared spectrometry, X-ray diffraction, and thermogravimetric analysis. Because of the amphiphilic properties of the synthesised copolymer, an agarwood essential oil nanoemulsion system was prepared. Using transmission electron microscopy and dynamic laser light scattering, the nanoemulsion was observed to have an apparent shell-core structure. The nanoemulsion was uniformly distributed, and the system had good stability. Finally, the electronic nose results showed that the nanocellulose crystal-grafted polylactic acid copolymer micelle effectively protected agarwood essential oil aromas.


Asunto(s)
Agar/química , Celulosa/química , Aceites Volátiles/química , Poliésteres/química , Emulsiones , Microscopía Electrónica de Transmisión , Nanopartículas , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA