Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Oncol ; 41(9): 212, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073639

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous non-Hodgkin lymphoma that is extremely aggressive and has an intermediate to high malignancy. Some patients still experience treatment failure, relapse, or resistance to rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP) therapy. Therefore, there is an urgent need for further research on new agents for the treatment of DLBCL. AP-48 is an aaptamine alkaloid analog with potent anti-tumor effects that originates from marine natural products. In this study, we found that AP-48 exhibits dose-dependent cytotoxicity in DLBCL cell lines. Flow cytometry showed that AP-48 induced cell cycle arrest in the G0/G1 phase in SU-DHL-4 and Farage cells and in the S phase in WSU-DLCL-2 cells. AP-48 also accelerated apoptosis via the caspase-3-mediated intrinsic apoptotic pathway. Further experiments demonstrated that AP-48 exerted its anti-DLBCL effects through the PI3K/AKT/mTOR pathway, and that the PI3K agonist YS49 partially alleviated the inhibition of cell proliferation and apoptosis induced by AP-48. Finally, in a tumor xenograft model, AP-48 inhibited tumor growth and promoted apoptosis in tumor tissues, indicating its therapeutic potential in DLBCL.


Asunto(s)
Alcaloides , Apoptosis , Linfoma de Células B Grandes Difuso , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Ensayos Antitumor por Modelo de Xenoinjerto , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/metabolismo , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Alcaloides/farmacología , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Poríferos/química , Ratones Desnudos , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Antineoplásicos/farmacología
2.
Cell Oncol (Dordr) ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083211

RESUMEN

PURPOSE: Acute erythroleukemia (AEL) is a rare and highly aggressive subtype of acute myeloid leukemia (AML) with an extremely poor prognosis when treated with available drugs. Therefore, new investigational agents capable of inducing remission are urgently required. METHODS: Bioinformatics analysis, western blot and qRT-PCR were used to reveal the potential biological mechanism of bryostatin 4 (B4), an antineoplastic macrolide derived from the marine bryozoan Bugula neritina. Then, in vivo experiments were conducted to evaluate the role of transforming growth factor (TGF)-ß signaling in the progression of AEL. RESULTS: Our results revealed that the proliferation of K562 cells and TF-1 cells was significantly inhibited by B4 at IC50 values of 37 nM and 52 nM, respectively. B4 inhibited TGF-ß signaling and its downstream pathway targets, particularly the phosphorylation of Smad2, Smad3, Ras, C-RAF, ERK1/2, and MEK. B4 also played an important role in cell invasion and migration in K562 cells and TF-1 cells by reducing the protein levels of the mesenchymal cell marker vimentin. Moreover, Flow cytometry and western blot analyses demonstrated that B4 induced apoptosis and initiated G0/G1 phase arrest by modulating mitochondrial dysfunction and cyclin-dependent kinase (CDK) expression. CONCLUSION: These findings indicated that B4 could inhibit the proliferation, migration, invasion, and TGF-ß signaling pathways of AEL cells, thus suggesting that B4 possesses therapeutic potential as a treatment for AEL.

3.
Front Chem ; 10: 1013994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267657

RESUMEN

Fighting against tumors is an ongoing challenge in both medicinal and clinical applications. In recent years, chemotherapy, along with surgery, has significantly improved the situation to prolong life expectancy. Theoretically, and regardless of dosage, we now have drugs that are strong enough to eliminate most tumors. However, due to uncontrollable drug distribution in the body, it is difficult to increase treatment efficiency by simply increasing dosages. For this reason, the need for a drug delivery system that can release "bombs" at the target organ or tissue as precisely as possible has elicited the interest of researchers. In our work, we design and construct a silica-based nanocomposite to meet the above demand. The novel nanocomposite drug carrier can be guided to target tumors or tissue by a magnetic field, since it is constructed with superparamagnetic Fe3O4 as the core. The Fe3O4 core is clad in a mesoporous silica molecular sieve MCM-41 (represented as MS, in this article), since this MS has enormous ordered hexagonal caves providing sufficient space to hold the drug molecules. To modify the magnetically guided carriers so that they become both magnetically guided and light-responsive, benzophenone hydrazone is coupled into the molecular sieve tunnel. When a certain wavelength of light is imposed on the gating molecules, C=N double bonds vibrate and swing, causing the cavity that holds the drug molecules to change size and open the tunnels. Hence, the nanocomposite has the ability to release loaded drugs with light irradiation. The structure, loading abilities, and the size of the nanocomposite are inspected with a scanning electron microscope, a transmission electron microscope, thermogravimetry analysis, N2 adsorption/desorption, and dynamic light scattering The biocompatibility and in vitro drug molecule controlled release are tested with an SMMC-7721 cell line.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA