Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dermatol Ther (Heidelb) ; 7(3): 407-415, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28710659

RESUMEN

INTRODUCTION: Pre-treatment of the skin to remove scales and crusts prior to photodynamic therapy (PDT) is essential to enhance the uptake of topically applied methyl aminolevulinate (MAL) and to improve treatment efficacy. This study compared the effect of two different skin preparation pads on skin integrity in ex vivo human skin. METHODS: Ex vivo human skin samples from three donors were pre-treated in triplicates with PREPSTER™ (PR) skin preparation pad (6, 8, and 10 passages) or Ambu Unilect™ (A-UN) skin preparation pad (6, 8, and 10 passages). In addition, skin samples were pre-treated with tape strippings (10 adhesive tape strips) as a reference method for comparison. Transepidermal water loss (TEWL) was measured on intact skin and following skin barrier impairment using skin preparation pads and tape stripping. Histological analysis was performed to verify the impairment of the stratum corneum (SC) barrier function in samples from intact skin (control), 10 tape strippings (reference method), 10 passages of PR, and 10 passages of A-UN. RESULTS: TEWL increased with the increasing number of passages of skin preparation pads, with 2.4- and 3.3-fold increases following 10 passages of A-UN and PR, respectively, versus a 2.2-fold increase with 10 tape strippings (reference). Histological analysis showed only partial removal of the SC, with no damage observed on the epidermis, regardless of the procedure used. CONCLUSION: Pre-treatment of skin using PR and A-UN skin preparation pads markedly increases TEWL, indicating slight impairment of the SC barrier function. Comparison of both skin preparation pads showed that PR pad consistently induced significantly higher TEWL than A-UN pad (p < 0.05), regardless of the number of passages. Both skin preparation pads are thought to increase the uptake of MAL and can therefore be used for the preparation of skin prior to PDT. FUNDING: Nestlé Skin Health - Galderma R&D.

2.
Sci Rep ; 7(1): 2954, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592806

RESUMEN

Autologous fat grafting is a gold standard therapy for soft tissue defects, but is hampered by unpredictable postoperative outcomes. Fat graft enrichment with adipose-derived stromal cell (ASCs) was recently reported to enhance graft survival. Platelet-rich plasma (PRP) has also emerged as a biologic scaffold that promotes fat graft viability. Combined ASC/PRP fat grafting enrichment is thus a promising new regenerative medicine approach. The effects of PRP on ASC proliferation are well documented, but the impact of PRP on ASC differentiation has yet to be investigated in depth to further elucidate the PRP clinical effects. Here we analyzed the human ASC fate upon PRP treatment. PRP was found to sharply reduce the potential of ASCs to undergo differentiation into adipocytes. Interestingly, the PRP anti-adipogenic effect was accompanied by the generation of myofibroblast-like cells. Among the various factors released from PRP, TGFß pathway activators played a critical role in both the anti-adipogenic and pro-myofibroblastic PRP effects. Overall, these data suggest that PRP participates in maintaining a pool of ASCs and in the repair process by promoting ASC differentiation into myofibroblast-like cells. TGFß may provide an important target pathway to improve PRP clinical outcomes.


Asunto(s)
Adipogénesis , Tejido Adiposo/citología , Diferenciación Celular , Miofibroblastos/citología , Miofibroblastos/metabolismo , Plasma Rico en Plaquetas/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Anciano , Benzamidas/farmacología , Células Cultivadas , Dioxoles/farmacología , Femenino , Humanos , Lactante , Masculino , Fenotipo
3.
Photodiagnosis Photodyn Ther ; 17: 75-81, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27903435

RESUMEN

BACKGROUND: Photodynamic therapy (PDT) is a successful treatment for non-melanoma skin cancers. Methyl-aminolevulinate (MAL) is metabolized to protoporphyrin IX (PpIX) which accumulates in the skin lesion and which generates a painful photochemical toxic reaction upon red light exposure. PDT using daylight (DL) exposure is now used to reduce pain and subjects are advised to protect the areas with sunscreen. This work investigated the effect of sunscreen on MAL penetration and PpIX photoactivation in ex vivo human skin. METHODS: To measure skin penetration of MAL, particle-free sunscreens were applied on ex vivo human skin samples mounted on diffusion cells before application of Metvix cream containing [14C]-MAL for 2.5h. To circumvent the absence of skin penetration of PpIX, skin samples were first treated with microneedles and mounted on diffusion cells before the application of PpIX solution for 1h followed by sunscreens. Skin samples were then exposed to solar simulator for 1h. Concentrations of [14C]-MAL or PpIX were measured in both total skin and receptor liquid. RESULTS AND CONCLUSIONS: The results showed that the in vitro skin penetration of MAL and the PpIX photoactivation on ex vivo human skin samples are not modified by pretreatments of ex vivo human skin with sunscreens. This study demonstrates that neither in vitro skin penetration of MAL nor PpIX photoactivation were modified by pretreatments with Cetaphil SPF 30 Dermacontrol and Actinica® Lotion SPF 50+. This supports the efficacy and safety of MAL DL-PDT in the clinical situation.


Asunto(s)
Ácido Aminolevulínico/análogos & derivados , Fármacos Fotosensibilizantes/farmacocinética , Protoporfirinas/metabolismo , Absorción Cutánea/efectos de los fármacos , Protectores Solares/farmacología , Ácido Aminolevulínico/farmacocinética , Humanos , Fotoquimioterapia/métodos
4.
Stem Cells Int ; 2015: 592090, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25733979

RESUMEN

Animal study findings have revealed that individual fat depots are not functionally equivalent and have different embryonic origins depending on the anatomic location. Mouse bone regeneration studies have also shown that it is essential to match the Hox code of transplanted cells and host tissues to achieve correct repair. However, subcutaneous fat depots from any donor site are often used in autologous fat grafting. Our study was thus carried out to determine the embryonic origins of human facial (chin) and limb (knee) fat depots and whether they had similar features and molecular matching patterns. Paired chin and knee fat depots were harvested from 11 subjects and gene expression profiles were determined by DNA microarray analyses. Adipose-derived stromal cells (ASCs) from both sites were isolated and analyzed for their capacity to proliferate, form clones, and differentiate. Chin and knee fat depots expressed a different HOX code and could have different embryonic origins. ASCs displayed a different phenotype, with chin-ASCs having the potential to differentiate into brown-like adipocytes, whereas knee-ASCs differentiated into white adipocytes. These results highlighted different features for these two fat sites and indicated that donor site selection might be an important factor to be considered when applying adipose tissue in cell-based therapies.

5.
Drug Metabol Drug Interact ; 29(2): 91-100, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24558228

RESUMEN

BACKGROUND: Most identified drug transporters belong to the ATP-binding cassette (ABC) and solute carrier (SLC) families. Recent research indicates that these transporters play an important role in the absorption, distribution and excretion of drugs, and are involved in clinically relevant drug-drug interactions for systemic drugs. However, very little is known about the role of drug transporters in human skin, especially in the disposition of topically applied drugs, and their involvement in drug-drug interactions. The aim of this work was to characterize the ABC transporters in human skin. METHODS: Expressions of ABCB1 multidrug resistance protein 1 (MDR1) also known as P-gp, ABCC1 and ABCC2 multidrug resistance-associated protein 1 and 2 (MRP1 and MRP2), and ABCG2 brest cancer resistance protein (BCRP) in human skin tissues were analyzed by quantitative real-time polymerase chain reaction (RT-PCR). The modulations of ABCB1 and ABCC1 expressions were analyzed after ex vivo treatment of human skin with rifampicin and dexamethasone. The localization of the major transporter MRP1 in human skin was analyzed by immunohistochemistry. Finally, functional analysis of MRP1 in human skin was performed using different specific substrates and inhibitors. RESULTS: The expressions of ABCB1, ABCC1, ABCC2, and ABCG2 were all detected in human skin, of which the expression of ABCC1 was considered the most important. The comparison of human skin with human hepatocytes and kidneys shows that the expression of ABCC1 increased 15-fold in skin than in hepatocytes. Immunohistochemistry revealed marked expressions of MRP1 within the hair follicle, sweat gland and muscle, as well as moderate expression in the basal epidermis. Functional analysis demonstrated that the skin absorptions of rhodamine 123, [3H]-vinblastine, and [3H]-LTC4 were markedly decreased in the presence of MRP1 inhibitors (verapamil and MK571), thus supporting the role of MRP1 in the uptake of compounds from the epidermal compartment as well as their secretion into the bloodstream and sweat ducts. CONCLUSIONS: The present findings are the first to demonstrate the involvement of MRP1 in drug uptake in human skin.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Expresión Génica , Piel/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Dexametasona/farmacocinética , Dexametasona/farmacología , Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inmunohistoquímica , Técnicas In Vitro , Riñón/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Reacción en Cadena en Tiempo Real de la Polimerasa , Rifampin/farmacocinética , Rifampin/farmacología , Absorción Cutánea , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...