Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Physiol ; 13: 1046166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36579023

RESUMEN

In the course of their missions or training, alpinists, but also mountain combat forces and mountain security services, professional miners, aircrew, aircraft and glider pilots and helicopter crews are regularly exposed to altitude without oxygen supplementation. At altitude, humans are exposed to systemic environmental hypoxia induced by the decrease in barometric pressure (<1,013 hPa) which decreases the inspired partial pressure of oxygen (PIO2), while the oxygen fraction is constant (equal to approximately 20.9%). Effects of altitude on humans occur gradually and depend on the duration of exposure and the altitude level. From 1,500 m altitude (response threshold), several adaptive responses offset the effects of hypoxia, involving the respiratory and the cardiovascular systems, and the oxygen transport capacity of the blood. Fatigue and cognitive and sensory disorders are usually observed from 2,500 m (threshold of prolonged hypoxia). Above 3,500 m (the threshold for disorders), the effects are not completely compensated and maladaptive responses occur and individuals develop altitude headache or acute altitude illness [Acute Mountain Sickness (AMS)]. The magnitude of effects varies considerably between different physiological systems and exhibits significant inter-individual variability. In addition to comorbidities, the factors of vulnerability are still little known. They can be constitutive (genetic) or circumstantial (sleep deprivation, fatigue, speed of ascent.). In particular, sleep loss, a condition that is often encountered in real-life settings, could have an impact on the physiological and cognitive responses to hypoxia. In this review, we report the current state of knowledge on the impact of sleep loss on responses to environmental hypoxia in humans, with the aim of identifying possible consequences for AMS risk and cognition, as well as the value of behavioral and non-pharmacological countermeasures.

2.
Front Med (Lausanne) ; 9: 1000786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405624

RESUMEN

This study investigates whether a functional single nucleotide polymorphism of HMOX2 (heme oxygenase-2) (rs4786504 T>C) is involved in individual chemosensitivity to acute hypoxia, as assessed by ventilatory responses, in European individuals. These responses were obtained at rest and during submaximal exercise, using a standardized and validated protocol for exposure to acute normobaric hypoxia. Carriers of the ancestral T allele (n = 44) have significantly lower resting and exercise hypoxic ventilatory responses than C/C homozygous carriers (n = 40). In the literature, a hypoxic ventilatory response threshold to exercise has been identified as an independent predictor of severe high altitude-illness (SHAI). Our study shows that carriers of the T allele have a higher risk of SHAI than carriers of the mutated C/C genotype. Secondarily, we were also interested in COMT (rs4680 G > A) polymorphism, which may be indirectly involved in the chemoreflex response through modulation of autonomic nervous system activity. Significant differences are present between COMT genotypes for oxygen saturation and ventilatory responses to hypoxia at rest. In conclusion, this study adds information on genetic factors involved in individual vulnerability to acute hypoxia and supports the critical role of the ≪ O2 sensor ≫ - heme oxygenase-2 - in the chemosensitivity of carotid bodies in Humans.

3.
Nutrients ; 13(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34684424

RESUMEN

The objective of this meta-analysis was to assess the effect of acute heat/cold exposure on subsequent energy intake (EI) in adults. We searched the following sources for publications on this topic: PubMed, Ovid Medline, Science Direct and SPORTDiscus. The eligibility criteria for study selection were: randomized controlled trials performed in adults (169 men and 30 women; 20-52 years old) comparing EI at one or more meals taken ad libitum, during and/or after exposure to heat/cold and thermoneutral conditions. One of several exercise sessions could be realized before or during thermal exposures. Two of the thirteen studies included examined the effect of heat (one during exercise and one during exercise and at rest), eight investigated the effect of cold (six during exercise and two at rest), and three the effect of both heat and cold (two during exercise and one at rest). The meta-analysis revealed a small increase in EI in cold conditions (g = 0.44; p = 0.019) and a small decrease in hot conditions (g = -0.39, p = 0.022) for exposure during both rest and exercise. Exposures to heat and cold altered EI in opposite ways, with heat decreasing EI and cold increasing it. The effect of exercise remains unclear.


Asunto(s)
Frío , Ingestión de Energía , Exposición a Riesgos Ambientales , Ejercicio Físico , Calor , Descanso , Metabolismo Energético , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Evaluación del Impacto en la Salud , Humanos , Masculino , Comidas
4.
Physiol Rep ; 9(16): e14686, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34405575

RESUMEN

Aerobic training leads to well-known systemic metabolic and muscular alterations. Heat acclimation may also increase mitochondrial muscle mass. We studied the effects of heat acclimation combined with endurance training on metabolic adaptations of skeletal muscle. Thirty-two rats were divided into four groups: control (C), trained (T), heat-acclimated (H), and trained with heat acclimation (H+T) for 6 weeks. Soleus muscle metabolism was studied, notably by the in situ measurement of mitochondrial respiration with pyruvate (Pyr) or palmitoyl-coenzyme A (PCoA), under phosphorylating conditions ( V˙max ) or not ( V˙0 ). Aerobic performance increased, and retroperitoneal fat mass decreased with training, independently of heat exposure (p < 0.001 and p < 0.001, respectively). Citrate synthase and hydroxyl-acyl-dehydrogenase activity increased with endurance training (p < 0.001 and p < 0.01, respectively), without any effect of heat acclimation. Training induced an increase of the V˙0 and V˙max for PCoA (p < .001 and p < .01, respectively), without interference with heat acclimation. The training-induced increase of V˙0 (p < 0.01) for pyruvate oxidation was limited when combined with heat acclimation (-23%, p < 0.01). Training and heat acclimation independently increased the V˙max for pyruvate (+60% p < 0.001 and +50% p = 0.01, respectively), without an additive effect of the combination. Heat acclimation doubled the training effect on muscle glycogen storage (p < 0.001). Heat acclimation did not improve mitochondrial adaptations induced by endurance training in the soleus muscle, possibly limiting the alteration of carbohydrate oxidation while not facilitating fatty-acid utilization. Furthermore, the increase in glycogen storage observed after HA combined with endurance training, without the improvement of pyruvate oxidation, appears to be a hypoxic metabolic phenotype.


Asunto(s)
Músculo Esquelético/fisiología , Condicionamiento Físico Animal/métodos , Esfuerzo Físico , Termotolerancia , Adiposidad , Animales , Respiración de la Célula , Ácidos Grasos/metabolismo , Glucógeno/metabolismo , Masculino , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Ácido Pirúvico/metabolismo , Ratas , Ratas Wistar
5.
Front Sports Act Living ; 3: 663857, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124658

RESUMEN

Altitude camps are used during the preparation of endurance athletes to improve performance based on the stimulation of erythropoiesis by living at high altitude. In addition to such whole-body adaptations, studies have suggested that high-altitude training increases mitochondrial mass, but this has been challenged by later studies. Here, we hypothesized that living and training at high altitude (LHTH) improves mitochondrial efficiency and/or substrate utilization. Female rats were exposed and trained in hypoxia (simulated 3,200 m) for 5 weeks (LHTH) and compared to sedentary rats living in hypoxia (LH) or normoxia (LL) or those that trained in normoxia (LLTL). Maximal aerobic velocity (MAV) improved with training, independently of hypoxia, whereas the time to exhaustion, performed at 65% of MAV, increased both with training (P = 0.009) and hypoxia (P = 0.015), with an additive effect of the two conditions. The distance run was 7.98 ± 0.57 km in LHTH vs. 6.94 ± 0.51 in LLTL (+15%, ns). The hematocrit increased >20% with hypoxia (P < 0.001). The increases in mitochondrial mass and maximal oxidative capacity with endurance training were blunted by combination with hypoxia (-30% for citrate synthase, P < 0.01, and -23% for Vmax glut-succ, P < 0.001 between LHTH and LLTL). A similar reduction between the LHTH and LLTL groups was found for maximal respiration with pyruvate (-29%, P < 0.001), for acceptor-control ratio (-36%, hypoxia effect, P < 0.001), and for creatine kinase efficiency (-48%, P < 0.01). 3-hydroxyl acyl coenzyme A dehydrogenase was not altered by hypoxia, whereas maximal respiration with Palmitoyl-CoA specifically decreased. Overall, our results show that mitochondrial adaptations are not involved in the improvement of submaximal aerobic performance after LHTH, suggesting that the benefits of altitude camps in females relies essentially on other factors, such as the transitory elevation of hematocrit, and should be planned a few weeks before competition and not several months.

6.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523852

RESUMEN

Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity. Mechanistically, muscle-specific modulation of the very-long-chain fatty acid pathway was associated with a reduced content of the inner mitochondrial membrane phospholipid cardiolipin and a blunted coupling efficiency between the respiratory chain and adenosine 5'-triphosphate (ATP) synthase, which was restored by cardiolipin enrichment. Our study reveals that selective increase of lipid oxidative capacities in skeletal muscle, through the cardiolipin-dependent lowering of mitochondrial ATP production, provides an effective option against obesity at the whole-body level.

7.
Sci Rep ; 10(1): 20260, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219295

RESUMEN

Benefits obtained after heat acclimation/acclimatization should be completely lost after an estimated period of 6 weeks. However, this estimate is still hypothetical. We evaluate the long-term effects of heat acclimatization on the level of heat tolerance. Physiological and subjective markers of heat tolerance were assessed during a heat stress test (HST: 3 × 8-min runs outdoors [~ 40 °C and 20% RH] at 50% of their estimated speed at VO2max) performed on the 2nd day upon arrival to the desert military base in the United Arab Emirates after a first day of mostly passive exposure to heat. Among the 50 male French soldiers, 25 partook in a 4-month military mission in countries characterized by a hot environment ~ 6 months prior to the study (HA). The other 25 participants were never heat acclimatized (CT). Rectal temperature (p = 0.023), heart rate (p = 0.033), and perceived exertion (p = 0.043) were lower in the HA than CT group at the end of HST. Soldiers who experienced a former 4-month period of natural heat acclimatization very likely had a higher level of heat tolerance during exercise in the heat, even 6 months after returning from the previous desert mission, than that of their non-acclimatized counterparts.


Asunto(s)
Aclimatación/fisiología , Calor , Termotolerancia , Adulto , Temperatura Corporal , Frecuencia Cardíaca , Humanos , Masculino , Esfuerzo Físico
8.
Temperature (Austin) ; 7(3): 277-289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123621

RESUMEN

A basal heat stress test (HST) to predict the magnitude of adaptive responses during heat acclimatization (HA) would be highly useful for the armed forces. The aim was to identify physiological markers assessed during a HST (three 8-min running sets at 50% of the speed at VO2max) performed just before a 14-day HA period that would identify participants still at "risk" at the end of HA. Individuals that responded poorly (large increases in rectal temperature [Trec] and heart rate [HR]) during the initial HST were more likely to respond favorably to HA (large reductions in Trec and HR). However, they were also more likely to exhibit lower tolerance to HST at D15. Basal Trec was found to efficiently discriminate participants showing a Trec > 38.5°C after HA, who are considered to be "at risk". Finally, participants were classified by quartiles based on basal Trec and HR at the end of the HST and physiological strain index (PSI). Most of the participants "at risk" were among the upper quartile (i.e. the least tolerant) of Trec and PSI (p = 0.011 for both). Overall, these results show that the individuals who are less tolerant to a basal HST are very likely to benefit the most from HA but they also remain less tolerant to heat at the end of HA than those who better tolerated the basal HST. A basal HST could therefore theoretically help the command to select the most-ready personnel in hot conditions while retaining those who are less tolerant 6.

9.
J Appl Physiol (1985) ; 127(2): 312-319, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31161881

RESUMEN

We investigated the effect of temperature increase on mitochondrial fatty acid (FA) and carbohydrate oxidation in the slow-oxidative skeletal muscles (soleus) of rats. We measured mitochondrial respiration at 35°C and 40°C with the physiological substrates pyruvate + 4 mM malate (Pyr) and palmitoyl-CoA (PCoA) + 0.5 mM malate + 2 mM carnitine in permeabilized myofibers under nonphosphorylating (V˙0) or phosphorylating (V˙max) conditions. Mitochondrial efficiency was calculated by the respiratory control ratio (RCR = V˙max/V˙0). We used guanosine triphosphate (GTP), an inhibitor of uncoupling protein (UCP), to study the mechanisms responsible for alterations of mitochondrial efficiency. We measured hydrogen peroxide (H2O2) production under nonphosphorylating and phosphorylating conditions at both temperatures and substrates. We studied citrate synthase (CS) and 3-hydroxyl acyl coenzyme A dehydrogenase (3-HAD) activities at both temperatures. Elevating the temperature from 35°C to 40°C increased PCoA-V˙0 and decreased PCoA-RCR, corresponding to the uncoupling of oxidative phosphorylation (OXPHOS). GTP blocked the heat-induced increase of PCoA-V˙0. Rising temperature moved toward a Pyr-V˙0 increase, without significance. Heat did not alter H2O2 production, resulting from either PCoA or Pyr oxidation. Heat induced an increase in 3-HAD but not in CS activities. In conclusion, heat induced OXPHOS uncoupling for PCoA oxidation, which was at least partially mediated by UCP and independent of oxidative stress. The classically described heat-induced glucose shift may actually be mostly due to a less efficient FA oxidation. These findings raise questions concerning the consequences of heat-induced alterations in mitochondrial efficiency of FA metabolism on thermoregulation.NEW & NOTEWORTHY Ex vivo exposure of skeletal myofibers to heat uncouples substrate oxidation from ADP phosphorylation, decreasing the efficiency of mitochondria to produce ATP. This heat effect alters fatty acids (FAs) more than carbohydrate oxidation. Alteration of FA oxidation involves uncoupling proteins without inducing oxidative stress. This alteration in lipid metabolism may underlie the preferential use of carbohydrates in the heat and could decrease aerobic endurance.


Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias Musculares/metabolismo , Miofibrillas/metabolismo , Animales , Carnitina/metabolismo , Respiración de la Célula/fisiología , Citrato (si)-Sintasa/metabolismo , Glucosa/metabolismo , Peróxido de Hidrógeno/metabolismo , Metabolismo de los Lípidos/fisiología , Malatos/metabolismo , Masculino , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Estrés Oxidativo/fisiología , Consumo de Oxígeno/fisiología , Palmitoil Coenzima A/metabolismo , Ácido Pirúvico/metabolismo , Ratas , Ratas Wistar , Temperatura
10.
J Therm Biol ; 77: 145-156, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30196894

RESUMEN

Heat acclimatization may help personnel who travel to areas with a hot climate (WBGT > 27 °C), making them operationally more efficient and performant through improvements in physiological and psychological parameters. Their work-related physical activities may aid active heat acclimatization. However, it is unknown whether adding physical training to improve adaptation is effective, particularly if there is sufficient time for full acclimatization, classically reached after 15 days. Thirty French soldiers (Training group, T) performed a progressive and moderate (from three to five 8-min running sets at 50-60% of their speed at VO2max with 4-min periods of active recovery in between) aerobic training program upon arriving at their base in United Arab Emirates (~40 °C and 20% RH). A control group (30 soldiers; No Training, NT) continued to perform only their usual outdoor military activities (~5 h d-1). A field heat stress test (HST: three 8-min running sets at 50% of the speed at VO2max) was performed before (D0), during (D10), and after (D15) the heat acclimatization period to assess physiological and psychological changes. An 8-km trial in battledress was then performed at D17. Although physiological modifications were mostly similar (p < 0.001 for all) for both groups (rectal temperature at the end of the HST: -0.58 ±â€¯0.51 vs -0.53 ±â€¯0.40 °C, HR at the end of the HST: -21 ±â€¯12 vs -19 ±â€¯9 bpm, and sweat osmolality: -47 ±â€¯30 vs -26 ±â€¯32 mOsmol.l-1 between D15 and D0 for T and NT groups, respectively), thermal discomfort (-31 ±â€¯4 vs -11 ±â€¯5 mm between D15 and D0, p = 0.001) and rates of perceived exertion (-3.0 ±â€¯0.4 vs -1.4 ±â€¯0.3 D15 and D0, p = 0.001) were much lower in the T than NT group during the HST. HST-induced modifications in facial temperature only decreased in the T group (-1.08 ±â€¯0.28 between D15 and D0, p < 0.001). Moreover, there was a difference in perceived thermal discomfort during the 8-km trial (40 ±â€¯20 vs 55 ±â€¯22 mm for the T and NT groups, respectively, p = 0.010). Thus, a 15-day, low-volume training regimen during a mission in a hot and dry environment has a modest impact on physiological adaptation but strongly decreases the perceived strain of exertion and climate potentially via greater reductions in facial temperature, even during a classical operational physical task in a military context.


Asunto(s)
Aclimatación , Ejercicio Físico , Respuesta al Choque Térmico , Sudoración , Adaptación Psicológica , Adulto , Temperatura Corporal , Clima , Calor , Humanos , Personal Militar , Carrera , Adulto Joven
11.
Eur J Sport Sci ; 18(10): 1346-1356, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30016189

RESUMEN

We tested the hypothesis that backward downhill walking (eccentric component) impairs both voluntary activation and muscle contractile properties in the plantar flexors and delays recovery as compared to a gradient and distance-matched uphill walk. Fourteen males performed two 30-min walking exercises (velocity: 1 m/ s; grade: 25%; load: 12% of body weight), one downhill (DW) and one uphill (UP), in a counterbalanced order, separated by 6 weeks. Neuromuscular test sessions were performed before, after, 24-, 48- and 72-h post-exercise, including motor nerve stimulations during brief (5 s) and sustained (1 min) maximal isometric voluntary contractions of the plantar flexors. DW (-18.1 ± 11.1%, P < .001), but not UP (-6.0 ± 7.7%, P =.15), decreased torque production during brief contractions for at least three days post-exercise (P < .05). Voluntary activation during brief contractions decreased after DW (P < .05), but not UP, and recovered by 24 h. Both UP (-9.3 ± 9.0%, P = .024) and DW (-25.6 ± 10.3%, P < .001) decreased torque production during sustained contractions but voluntary activation (P = .001) was lower in DW than UP. Peak twitch torque and maximum rates of torque development and relaxation were equally reduced after UP and DW (P < .05), and recovered by 24 h. DW induced an increase in muscle soreness with peak values observed 48 h post-walking (P < .001), whereas post-UP exercise changes were non-significant (all P > .05). Using a direct comparison, the capacity to drive the plantar flexors during sustained contractions remains sub-optimal during the three-day recovery period in response to non-exhaustive, downhill backward walking in reference to an uphill exercise matched for distance covered.


Asunto(s)
Marcha , Músculo Esquelético/fisiología , Caminata/fisiología , Adulto , Fenómenos Biomecánicos , Estimulación Eléctrica , Prueba de Esfuerzo , Humanos , Contracción Isométrica , Masculino , Mialgia , Torque
12.
Data Brief ; 18: 190-197, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29896510

RESUMEN

MicroRNA (miRNA) are found in numerous biofluids including blood and are considered a new class of biomarkers. In several animal models as well as in human diseases, they are interesting circulating markers of acute or chronic tissue injury. This article provides additional data related to a previous research article entitled "Circulating miRNAs as biomarkers of acute muscle damage in rats" by Siracusa et al. (2016) [1]. The data were obtained by RT-qPCR performed on plasma of rats exposed to acute muscle damage. The present set of data displays 45 non muscle-specific miRNA responses to acute, experimental muscle injury in healthy rats. They complement previous findings showing that circulating levels of miRNAs can be affected by muscle damage.

13.
Front Physiol ; 9: 684, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922177

RESUMEN

Skeletal muscle is a heterogeneous tissue composed of a continuum of contracting fibers ranging from slow-type to fast-type fibers. Muscle damage is a frequent event and a susceptibility of fast-fibers to exercise-induced damage (EIMD) or statins toxicity has been reported. Biological markers of muscle damage such as creatine kinase (CK) are not fiber-type specific and new biomarkers are needed. Some microRNAs (miRNAs) are specific to the muscle tissue, can be found in the extracellular compartment and can rise in the plasma following muscle damage. Our aim was to identify whether a set of circulating miRNAs can be used as fiber-type specific biomarkers of muscle damage in a model of traumatic (crush) injuries induced either in the slow soleus (SOL) or in the fast extensor digitorum longus (EDL) muscles of rats. A subset of miRNAs composed of miR-1-3p, -133a-3p, -133b-3p, 206-3p, -208b-3p, 378a-3p, -434-3p, and -499-5p were measured by RT-PCR in non-injured SOL or EDL muscle and in the plasma of rats 12 h after damage induced to SOL or EDL. MiR-133b-3p, -378a-3p, and -434-3p were equally expressed both in SOL and EDL muscles. MiR-1-3-p and -133a-3p levels were higher in EDL compared to SOL (1.3- and 1.1-fold, respectively). Conversely, miR-206-3p, -208b-3p, and -499-5p were mainly expressed in SOL compared to EDL (7.4-, 35.4-, and 10.7-fold, respectively). In the plasma, miR-1-3p and -133a-3p were elevated following muscle damage compared to a control group, with no difference between SOL and EDL. MiR-133b-3p and -434-3p plasma levels were significantly higher in EDL compared to SOL (1.8- and 2.4-fold, respectively), while miR-378a-3p rose only in the EDL group. MiR-206-3p levels were elevated in SOL only (fourfold compared to EDL). Our results show that plasma miR-133b-3p and -434 are fast-fiber specific biomarkers, while miR-206-3p is a robust indicator of slow-fiber damage, opening new perspectives to monitor fiber-type selective muscle damage in research and clinic.

14.
J Cachexia Sarcopenia Muscle ; 9(1): 20-27, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29193905

RESUMEN

MicroRNAs (miRNA) are small non-coding RNAs that target mRNAs and are consequently involved in the post-transcriptional regulation of gene expression. Some miRNAs are ubiquitously expressed in tissue, while others are tissue-specific or tissue-enriched. miRNAs can be released by cells and are found in various biofluids, including serum and plasma. Thus, measuring miRNAs in the circulation may provide information on the originating tissue or cells. MyomiRs are described as striated muscle-specific or muscle-enriched miRNAs. Their circulating levels can be measured and have been proposed to be new biomarkers of physiological and pathological muscle processes. The aims of this review are to summarize the current knowledge of circulating myomiRs, to identify the types of information they can provide about skeletal muscle, and to determine how to apply that information in the fields of research and medicine.


Asunto(s)
Biomarcadores/metabolismo , Medicina/tendencias , MicroARNs/sangre , Músculo Esquelético/fisiología
15.
Front Physiol ; 8: 419, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28670286

RESUMEN

Personnel who travel to areas with a hot climate (WBGT > 27°C) may suffer from the heat (physiological strain, thermal discomfort, increased probability of heat illness), making them partially or fully inoperative. Performing physical activities during heat acclimatization is known to improve this process (i.e., improve measures of acclimatization for the same duration of acclimation). However, it is unknown whether such training would be efficient in an operative context, characterized by a high volume of work-related physical activity. Thirty French soldiers (Training group, T) performed a short (5 days), progressive, moderate (from three to five 8-min running sets at 50% of the speed at VO2max for 32-56 min) aerobic training program upon arriving at their base in United Arab Emirates (~40°C and 12% RH). A control group (30 soldiers; No Training, NT) continued to perform their usual outdoor military activities (~6 h.d-1). A field heat stress test (HST; three 8-min running sets at 50% of the speed at VO2max) was performed, before and after the heat acclimatization period, to assess physiological and subjective changes. Rectal temperature, heart rate (HR), thermal discomfort at rest and at the end of exercise, rates of perceived exertion (RPE), and sweat loss and osmolality decreased following heat acclimatization in both groups. However, the decreases in the T group were larger than those in the NT group for HR at the end of exercise (-20 ± 13 vs. -13 ± 6 bpm, respectively, p = 0.044), thermal discomfort at rest (-2.6 ± 2.7 vs. -1.4 ± 2.1 cm, respectively, p = 0.013) and at the end of exercise (-2.6 ± 1.9 vs. -1.6 ± 1.7 cm, respectively, p = 0.037) and RPE (-2.3 ± 1.8 vs. -1.3 ± 1.7, respectively, p = 0.035). Thus, we showed that adding short (<60 min), daily, moderate-intensity training sessions during a professional mission in a hot and dry environment accelerated several heat-acclimatization-induced changes at rest and during exercise in only 5 days.

16.
Am J Physiol Cell Physiol ; 312(3): C209-C221, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003225

RESUMEN

Over the last several years, converging lines of evidence have indicated that miR-206 plays a pivotal role in promoting muscle differentiation and regeneration, thereby potentially impacting positively on the progression of neuromuscular disorders, including Duchenne muscular dystrophy (DMD). Despite several studies showing the regulatory function of miR-206 on target mRNAs in skeletal muscle cells, the effects of overexpression of miR-206 in dystrophic muscles remain to be established. Here, we found that miR-206 overexpression in mdx mouse muscles simultaneously targets multiple mRNAs and proteins implicated in satellite cell differentiation, muscle regeneration, and at the neuromuscular junction. Overexpression of miR-206 also increased the levels of several muscle-specific mRNAs/proteins, while enhancing utrophin A expression at the sarcolemma. Finally, we also observed that the increased expression of miR-206 in dystrophin-deficient mouse muscle decreased the production of proinflammatory cytokines and infiltration of macrophages. Taken together, our results show that miR-206 acts as a pleiotropic regulator that targets multiple key mRNAs and proteins expected to provide beneficial adaptations in dystrophic muscle, thus highlighting its therapeutic potential for DMD.


Asunto(s)
Adaptación Fisiológica , Citocinas/metabolismo , Macrófagos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Regulación de la Expresión Génica , Macrófagos/patología , Masculino , Ratones , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Unión Proteica , Distribución Tisular
17.
J Appl Physiol (1985) ; 122(3): 666-674, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28035013

RESUMEN

We investigated the effects of chronic hypoxia on the maximal use of and sensitivity of mitochondria to different substrates in rat slow-oxidative (soleus, SOL) and fast-glycolytic (extensor digitorum longus, EDL) muscles. We studied mitochondrial respiration in situ in permeabilized myofibers, using pyruvate, octanoate, palmitoyl-carnitine (PC), or palmitoyl-coenzyme A (PCoA). The hypophagia induced by hypoxia may also alter metabolism. Therefore, we used a group of pair-fed rats (reproducing the same caloric restriction, as observed in hypoxic animals), in addition to the normoxic control fed ad libitum. The resting respiratory exchange ratio decreased after 21 days of exposure to hypobaric hypoxia (simulated elevation of 5,500 m). The respiration supported by pyruvate and octanoate were unaffected. In contrast, the maximal oxidative respiratory rate for PCoA, the transport of which depends on carnitine palmitoyltransferase 1 (CPT-1), decreased in the rapid-glycolytic EDL and increased in the slow-oxidative SOL, although hypoxia improved affinity for this substrate in both muscle types. PC and PCoA were oxidized similarly in normoxic EDL, whereas chronic hypoxia limited transport at the CPT-1 step in this muscle. The effects of hypoxia were mediated by caloric restriction in the SOL and by hypoxia itself in the EDL. We conclude that improvements in mitochondrial affinity for PCoA, a physiological long-chain fatty acid, would facilitate fatty-acid use at rest after chronic hypoxia independently of quantitative alterations of mitochondria. Conversely, decreasing the maximal oxidation of PCoA in fast-glycolytic muscles would limit fatty-acid use during exercise.NEW & NOTEWORTHY Affinity for low concentrations of long-chain fatty acids (LCFA) in mitochondria skeletal muscles increases after chronic hypoxia. Combined with a lower respiratory exchange ratio, this suggests facility for fatty acid utilization at rest. This fuel preference is related to caloric restriction in oxidative muscle and to hypoxia in glycolytic one. In contrast, maximal oxidation for LCFA is decreased by chronic hypoxia in glycolytic muscle and can explain glucose dependence at exercise.


Asunto(s)
Adaptación Fisiológica , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Hipoxia/fisiopatología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/fisiopatología , Condicionamiento Físico Animal , Animales , Enfermedad Crónica , Glucólisis , Masculino , Tasa de Depuración Metabólica , Músculo Esquelético/patología , Oxígeno/metabolismo , Ratas , Ratas Wistar
18.
Muscle Nerve ; 55(1): 91-100, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27104889

RESUMEN

INTRODUCTION: As skeletal muscle mass recovery after extensive injury is improved by contractile activity, we explored whether concomitant exercise accelerates recovery of the contractile and metabolic phenotypes after muscle injury. METHODS: After notexin-induced degeneration of a soleus muscle, Wistar rats were assigned to active (running exercise) or sedentary groups. Myosin heavy chains (MHC), metabolic enzymes, and calcineurin were studied during muscle regeneration at different time points. RESULTS: The mature MHC profile recovered earlier in active rats (21 days after injury) than in sedentary rats (42 days). Calcineurin was higher in the active degenerated than in the sedentary degenerated muscles at day 14. Citrate synthase and total lactate dehydrogenase (LDH) activity decreased after injury and were similarly recovered in both active and sedentary groups at 14 or 42 days, respectively. H-LDH isozyme activity recovered earlier in the active rats. CONCLUSIONS: Exercise improved recovery of the slow/oxidative phenotype after soleus muscle injury. Muscle Nerve 55: 91-100, 2017.


Asunto(s)
Fibras Musculares de Contracción Lenta/fisiología , Enfermedades Musculares/fisiopatología , Enfermedades Musculares/rehabilitación , Condicionamiento Físico Animal/métodos , Regeneración/fisiología , Animales , Calcineurina/metabolismo , Citrato (si)-Sintasa/metabolismo , Modelos Animales de Enfermedad , Venenos Elapídicos/toxicidad , Prueba de Esfuerzo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasa 5 , Enfermedades Musculares/inducido químicamente , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Regeneración/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Int J Biochem Cell Biol ; 79: 488-493, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27378730

RESUMEN

The Ubiquitin Proteasome System (UPS) is mainly responsible for the increased protein breakdown observed in muscle wasting. The E3 ligase MuRF1 is so far the only enzyme known to direct the main contractile proteins for degradation (i.e. troponin I, myosin heavy chains and actin). However, MuRF1 does not possess any catalytic activity and thus depends on the presence of a dedicated E2 for catalyzing the covalent binding of polyubiquitin (polyUb) chains on the substrates. The E2 enzymes belonging to the UBE2D family are commonly used for in vitro ubiquitination assays but no experimental data suggesting their physiological role as bona fide MuRF1-interacting E2 enzymes are available. In this work, we first found that the mRNA levels of critical E3 enzymes implicated in the atrophying program (MuRF1, MAFbx, Nedd4 and to a lesser extent Mdm2) are tightly and rapidly controlled during the atrophy (up regulation) and recovery (down regulation) phases in the soleus muscle from hindlimb suspended rats. By contrast, E3 ligases (Ozz, ASB2ß and E4b) implicated in other processes (muscle development or regeneration) poorly responded to atrophy and recovery. UBE2B, an E2 enzyme systematically up regulated in various catabolic situations, was controlled at the mRNA levels like the E3s implicated in the atrophying process. By contrast, UBE2D2 was progressively repressed during atrophy and recovery, which makes it a poor candidate for a role during muscle atrophy. In addition, UBE2D2 did not exhibit any affinity with MuRF1 using either yeast two-hybrid or Surface Plasmon Resonance (SPR) approaches. Finally, UBE2D2 was unable to promote the degradation of the MuRF1 substrate α-actin in HEK293T cells, suggesting that no functional interaction exists between these enzymes within a cellular context. Altogether, our data strongly suggest that UBE2D2 is not the cognate ubiquitinating enzyme for MuRF1 and that peculiar properties of UBE2D enzymes may have biased in vitro ubiquitination assays.


Asunto(s)
Suspensión Trasera/efectos adversos , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/genética , Unión Proteica , Ratas , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
20.
Am J Pathol ; 186(5): 1313-27, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26952641

RESUMEN

Skeletal muscle damage is an often-occurring event. Diagnosis using the classic blood marker creatine kinase sometimes yields unsatisfactory results due to great interindividual variability. Therefore, the identification of reliable biomarkers is important. Our aim was to detect and characterize circulating miRNAs in plasma in response to acute notexin-induced muscle damage in rats. Real-time quantitative RT-PCR profiling led to the identification of miRNAs that were highly increased in plasma in response to notexin injection into several muscles, namely miR-1-3p, -133a-3p, -133b-3p, -206-3p, -208b-3p, and -499-5p, as well as miR-378a-3p and miR-434-3p. Peak values of miRNAs appeared 12 hours after injury, and were contained both in the vesicular and nonvesicular fractions of plasma. Receiver operating characteristic curve analysis showed that circulating miRNAs could accurately discriminate between damaged and nondamaged tissues. Furthermore, we tested the robustness of expression profiles in slow- and fast-type fibers. Upon inducing damage in slow- or fast-type muscle, we found that the damaged-muscle phenotype had a very limited impact on the miRNA response. Similarly, the circulating miRNAs selected were not affected by hemolysis or platelets, two pre-analytical factors known to affect plasma miRNA profiles. Taken together, our results show that circulating muscle-specific miRNAs, miR-378a-3p and miR-434-3p, are robust and promising biomarkers of acute muscle damage in rats.


Asunto(s)
MicroARNs/metabolismo , Enfermedades Musculares/diagnóstico , Animales , Biomarcadores/metabolismo , Venenos Elapídicos/toxicidad , Femenino , Masculino , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/inducido químicamente , Neurotoxinas/toxicidad , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...