Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 4(1): ycae023, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38500700

RESUMEN

Hydrogen may be the most important electron donor available in the subsurface. Here we analyse the diversity, abundance and expression of hydrogenases in 5 proteomes, 25 metagenomes, and 265 amplicon datasets of groundwaters with diverse geochemistry. A total of 1545 new [NiFe]-hydrogenase gene sequences were recovered, which considerably increased the number of sequences (1999) in a widely used database. [NiFe]-hydrogenases were highly abundant, as abundant as the DNA-directed RNA polymerase. The abundance of hydrogenase genes increased with depth from 0 to 129 m. Hydrogenases were present in 481 out of 1245 metagenome-assembled genomes. The relative abundance of microbes with hydrogenases accounted for ~50% of the entire community. Hydrogenases were actively expressed, making up as much as 5.9% of methanogen proteomes. Most of the newly discovered diversity of hydrogenases was in "Group 3b", which has been associated with sulfur metabolism. "Group 3d", facilitating the interconversion of electrons between hydrogen and NAD, was the most abundant and mainly observed in methanotrophs and chemoautotrophs. "Group 3a", associated with methanogenesis, was the most abundant in proteomes. Two newly discovered groups of [NiFe]-hydrogenases, observed in Methanobacteriaceae and Anaerolineaceae, further expanded diversity. Our results highlight the vast diversity, abundance and expression of hydrogenases in groundwaters, suggesting a high potential for hydrogen oxidation in subsurface habitats.

2.
ISME J ; 17(12): 2403-2414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37914776

RESUMEN

Cyanobacteria form dense multicellular communities that experience transient conditions in terms of access to light and oxygen. These systems are productive but also undergo substantial biomass turnover through cell death, supplementing heightened heterotrophic respiration. Here we use metagenomics and metaproteomics to survey the molecular response of a mat-forming cyanobacterium undergoing mass cell lysis after exposure to dark and anoxic conditions. A lack of evidence for viral, bacterial, or eukaryotic antagonism contradicts commonly held beliefs on the causative agent for cyanobacterial death during dense growth. Instead, proteogenomics data indicated that lysis likely resulted from a genetically programmed response triggered by a failure to maintain osmotic pressure in the wake of severe energy limitation. Cyanobacterial DNA was rapidly degraded, yet cyanobacterial proteins remained abundant. A subset of proteins, including enzymes involved in amino acid metabolism, peptidases, toxin-antitoxin systems, and a potentially self-targeting CRISPR-Cas system, were upregulated upon lysis, indicating possible involvement in the programmed cell death response. We propose this natural form of cell death could provide new pathways for controlling harmful algal blooms and for sustainable bioproduct production.


Asunto(s)
Cianobacterias , Proteoma , Proteoma/genética , Proteoma/metabolismo , Cianobacterias/metabolismo , Floraciones de Algas Nocivas , Biomasa , Muerte Celular
3.
ISME J ; 17(11): 2047-2057, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37723339

RESUMEN

Nature challenges microbes with change at different frequencies and demands an effective response for survival. Here, we used controlled laboratory experiments to investigate the effectiveness of different response strategies, such as post-translational modification, transcriptional regulation, and specialized versus adaptable metabolisms. For this, we inoculated replicated chemostats with an enrichment culture obtained from sulfidic stream microbiomes 16 weeks prior. The chemostats were submitted to alternatingly oxic and anoxic conditions at three frequencies, with periods of 1, 4 and 16 days. The microbial response was recorded with 16S rRNA gene amplicon sequencing, shotgun metagenomics, transcriptomics and proteomics. Metagenomics resolved provisional genomes of all abundant bacterial populations, mainly affiliated with Proteobacteria and Bacteroidetes. Almost all these populations maintained a steady growth rate under both redox conditions at all three frequencies of change. Our results supported three conclusions: (1) Oscillating oxic/anoxic conditions selected for generalistic species, rather than species specializing in only a single condition. (2) A high frequency of change selected for strong codon usage bias. (3) Alignment of transcriptomes and proteomes required multiple generations and was dependent on a low frequency of change.


Asunto(s)
Microbiota , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias , Metagenoma , Bacteroidetes/genética , Metagenómica/métodos
4.
Microbiome ; 11(1): 24, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36755313

RESUMEN

BACKGROUND: Stable isotope probing (SIP) approaches are a critical tool in microbiome research to determine associations between species and substrates, as well as the activity of species. The application of these approaches ranges from studying microbial communities important for global biogeochemical cycling to host-microbiota interactions in the intestinal tract. Current SIP approaches, such as DNA-SIP or nanoSIMS allow to analyze incorporation of stable isotopes with high coverage of taxa in a community and at the single cell level, respectively, however they are limited in terms of sensitivity, resolution or throughput. RESULTS: Here, we present an ultra-sensitive, high-throughput protein-based stable isotope probing approach (Protein-SIP), which cuts cost for labeled substrates by 50-99% as compared to other SIP and Protein-SIP approaches and thus enables isotope labeling experiments on much larger scales and with higher replication. The approach allows for the determination of isotope incorporation into microbiome members with species level resolution using standard metaproteomics liquid chromatography-tandem mass spectrometry (LC-MS/MS) measurements. At the core of the approach are new algorithms to analyze the data, which have been implemented in an open-source software ( https://sourceforge.net/projects/calis-p/ ). We demonstrate sensitivity, precision and accuracy using bacterial cultures and mock communities with different labeling schemes. Furthermore, we benchmark our approach against two existing Protein-SIP approaches and show that in the low labeling range used our approach is the most sensitive and accurate. Finally, we measure translational activity using 18O heavy water labeling in a 63-species community derived from human fecal samples grown on media simulating two different diets. Activity could be quantified on average for 27 species per sample, with 9 species showing significantly higher activity on a high protein diet, as compared to a high fiber diet. Surprisingly, among the species with increased activity on high protein were several Bacteroides species known as fiber consumers. Apparently, protein supply is a critical consideration when assessing growth of intestinal microbes on fiber, including fiber-based prebiotics. CONCLUSIONS: We demonstrate that our Protein-SIP approach allows for the ultra-sensitive (0.01 to 10% label) detection of stable isotopes of elements found in proteins, using standard metaproteomics data.


Asunto(s)
Microbiota , Espectrometría de Masas en Tándem , Humanos , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Sondas de ADN
5.
Front Microbiol ; 13: 780346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222325

RESUMEN

Lack of robustness is a major barrier to foster a sustainable cyanobacterial biotechnology. Use of cyanobacterial consortium increases biodiversity, which provides functional redundancy and prevents invading species from disrupting the production ecosystem. Here we characterized a cyanobacterial consortium enriched from microbial mats of alkaline soda lakes in BC, Canada, at high pH and alkalinity. This consortium has been grown in open laboratory culture for 4 years without crashes. Using shotgun metagenomic sequencing, 29 heterotrophic metagenome-assembled-genomes (MAGs) were retrieved and were assigned to Bacteroidota, Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobiota, Patescibacteria, Planctomycetota, and Archaea. In combination with metaproteomics, the overall stability of the consortium was determined under different cultivation conditions. Genome information from each heterotrophic population was investigated for six ecological niches created by cyanobacterial metabolism and one niche for phototrophy. Genome-resolved metaproteomics with stable isotope probing using 13C-bicarbonate (protein/SIP) showed tight coupling of carbon transfer from cyanobacteria to the heterotrophic populations, specially Wenzhouxiangella. The community structure was compared to a previously described consortium of a closely related cyanobacteria, which indicated that the results may be generalized. Productivity losses associated with heterotrophic metabolism were relatively small compared to other losses during photosynthesis.

6.
ISME J ; 15(12): 3683-3692, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34183781

RESUMEN

Methanotrophic microorganisms play a critical role in controlling the flux of methane from natural sediments into the atmosphere. Methanotrophs have been shown to couple the oxidation of methane to the reduction of diverse electron acceptors (e.g., oxygen, sulfate, nitrate, and metal oxides), either independently or in consortia with other microbial partners. Although several studies have reported the phenomenon of methane oxidation linked to selenate reduction, neither the microorganisms involved nor the underlying trophic interaction has been clearly identified. Here, we provide the first detailed evidence for interspecies electron transfer between bacterial populations in a bioreactor community where the reduction of selenate is linked to methane oxidation. Metagenomic and metaproteomic analyses of the community revealed a novel species of Methylocystis as the most abundant methanotroph, which actively expressed proteins for oxygen-dependent methane oxidation and fermentation pathways, but lacked the genetic potential for selenate reduction. Pseudoxanthomonas, Piscinibacter, and Rhodocyclaceae populations appeared to be responsible for the observed selenate reduction using proteins initially annotated as periplasmic nitrate reductases, with fermentation by-products released by the methanotrophs as electron donors. The ability for the annotated nitrate reductases to reduce selenate was confirmed by gene knockout studies in an isolate of Pseudoxanthomonas. Overall, this study provides novel insights into the metabolic flexibility of the aerobic methanotrophs that likely allows them to thrive across natural oxygen gradients, and highlights the potential role for similar microbial consortia in linking methane and other biogeochemical cycles in environments where oxygen is limited.


Asunto(s)
Bacterias , Metano , Bacterias/genética , Reactores Biológicos , Consorcios Microbianos , Oxidación-Reducción , Ácido Selénico
7.
mBio ; 10(3)2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239380

RESUMEN

Since the discovery of symbioses between sulfur-oxidizing (thiotrophic) bacteria and invertebrates at hydrothermal vents over 40 years ago, it has been assumed that autotrophic fixation of CO2 by the symbionts drives these nutritional associations. In this study, we investigated "Candidatus Kentron," the clade of symbionts hosted by Kentrophoros, a diverse genus of ciliates which are found in marine coastal sediments around the world. Despite being the main food source for their hosts, Kentron bacteria lack the key canonical genes for any of the known pathways for autotrophic carbon fixation and have a carbon stable isotope fingerprint that is unlike other thiotrophic symbionts from similar habitats. Our genomic and transcriptomic analyses instead found metabolic features consistent with growth on organic carbon, especially organic and amino acids, for which they have abundant uptake transporters. All known thiotrophic symbionts have converged on using reduced sulfur to gain energy lithotrophically, but they are diverse in their carbon sources. Some clades are obligate autotrophs, while many are mixotrophs that can supplement autotrophic carbon fixation with heterotrophic capabilities similar to those in Kentron. Here we show that Kentron bacteria are the only thiotrophic symbionts that appear to be entirely heterotrophic, unlike all other thiotrophic symbionts studied to date, which possess either the Calvin-Benson-Bassham or the reverse tricarboxylic acid cycle for autotrophy.IMPORTANCE Many animals and protists depend on symbiotic sulfur-oxidizing bacteria as their main food source. These bacteria use energy from oxidizing inorganic sulfur compounds to make biomass autotrophically from CO2, serving as primary producers for their hosts. Here we describe a clade of nonautotrophic sulfur-oxidizing symbionts, "Candidatus Kentron," associated with marine ciliates. They lack genes for known autotrophic pathways and have a carbon stable isotope fingerprint heavier than other symbionts from similar habitats. Instead, they have the potential to oxidize sulfur to fuel the uptake of organic compounds for heterotrophic growth, a metabolic mode called chemolithoheterotrophy that is not found in other symbioses. Although several symbionts have heterotrophic features to supplement primary production, in Kentron they appear to supplant it entirely.


Asunto(s)
Procesos Autotróficos , Bacterias/genética , Ciclo del Carbono/genética , Cilióforos/microbiología , Azufre/metabolismo , Simbiosis , Organismos Acuáticos/microbiología , Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Perfilación de la Expresión Génica , Genómica , Italia , Oxidación-Reducción , ARN Ribosómico 16S/genética
8.
Front Microbiol ; 10: 238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837968

RESUMEN

Metaproteomics, the study of protein expression in microbial communities, is a versatile tool for environmental microbiology. Achieving sufficiently high metaproteome coverage to obtain a comprehensive picture of the activities and interactions in microbial communities is one of the current challenges in metaproteomics. An essential step to maximize the number of identified proteins is peptide separation via liquid chromatography (LC) prior to mass spectrometry (MS). Thorough optimization and comparison of LC methods for metaproteomics are, however, currently lacking. Here, we present an extensive development and test of different 1D and 2D-LC approaches for metaproteomic peptide separations. We used fully characterized mock community samples to evaluate metaproteomic approaches with very long analytical columns (50 and 75 cm) and long gradients (up to 12 h). We assessed a total of over 20 different 1D and 2D-LC approaches in terms of number of protein groups and unique peptides identified, peptide spectrum matches (PSMs) generated, the ability to detect proteins of low-abundance species, the effect of technical replicate runs on protein identifications and method reproducibility. We show here that, while 1D-LC approaches are faster and easier to set up and lead to more identifications per minute of runtime, 2D-LC approaches allow for a higher overall number of identifications with up to >10,000 protein groups identified. We also compared the 1D and 2D-LC approaches to a standard GeLC workflow, in which proteins are pre-fractionated via gel electrophoresis. This method yielded results comparable to the 2D-LC approaches, however with the drawback of a much increased sample preparation time. Based on our results, we provide recommendations on how to choose the best LC approach for metaproteomics experiments, depending on the study aims.

9.
Genome Biol Evol ; 9(6): 1699-1710, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633403

RESUMEN

The impact of a structured environment on genome evolution can be determined through comparative population genomics of species that live in the same habitat. Recent work comparing three genome sequences of Sulfolobus acidocaldarius suggested that highly structured, extreme, hot spring environments do not limit dispersal of this thermoacidophile, in contrast to other co-occurring Sulfolobus species. Instead, a high level of conservation among these three S. acidocaldarius genomes was hypothesized to result from rapid, global-scale dispersal promoted by low susceptibility to viruses that sets S. acidocaldarius apart from its sister Sulfolobus species. To test this hypothesis, we conducted a comparative analysis of 47 genomes of S. acidocaldarius from spatial and temporal sampling of two hot springs in Yellowstone National Park. While we confirm the low diversity in the core genome, we observe differentiation among S. acidocaldarius populations, likely resulting from low migration among hot spring "islands" in Yellowstone National Park. Patterns of genomic variation indicate that differing geological contexts result in the elimination or preservation of diversity among differentiated populations. We observe multiple deletions associated with a large genomic island rich in glycosyltransferases, differential integrations of the Sulfolobus turreted icosahedral virus, as well as two different plasmid elements. These data demonstrate that neither rapid dispersal nor lack of mobile genetic elements result in low diversity in the S. acidocaldarius genomes. We suggest instead that significant differences in the recent evolutionary history, or the intrinsic evolutionary rates, of sister Sulfolobus species result in the relatively low diversity of the S. acidocaldarius genome.


Asunto(s)
Elementos Transponibles de ADN , Sulfolobus acidocaldarius/genética , Evolución Molecular , Eliminación de Gen , Genoma Arqueal , Manantiales de Aguas Termales/química , Manantiales de Aguas Termales/microbiología , Filogenia , Plásmidos/genética , Sulfolobus acidocaldarius/clasificación , Sulfolobus acidocaldarius/aislamiento & purificación
10.
Environ Microbiol ; 19(6): 2334-2347, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28276174

RESUMEN

Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta-population within Yellowstone National Park.


Asunto(s)
Manantiales de Aguas Termales/microbiología , Sulfolobus/genética , Sulfolobus/aislamiento & purificación , Alelos , Biodiversidad , Geografía , Manantiales de Aguas Termales/química , Parques Recreativos , Filogenia , Dinámica Poblacional , Sulfolobus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...