Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
2.
J Clin Invest ; 132(6)2022 03 15.
Article En | MEDLINE | ID: mdl-35133978

The causative role of inflammation in hypertension-related cardiovascular diseases is evident and calls for development of specific immunomodulatory therapies. We tested the therapeutic efficacy and mechanisms of action of developmental endothelial locus-1 (DEL-1), an endogenous antiinflammatory factor, in angiotensin II- (ANGII-) and deoxycorticosterone acetate-salt-induced (DOCA-salt-induced) cardiovascular organ damage and hypertension. By using mice with endothelial overexpression of DEL-1 (EC-Del1 mice) and performing preventive and interventional studies by injecting recombinant DEL-1 in mice, we showed that DEL-1 improved endothelial function and abrogated aortic adventitial fibrosis, medial thickening, and loss of elastin. DEL-1 also protected the mice from cardiac concentric hypertrophy and interstitial and perivascular coronary fibrosis and improved left ventricular function and myocardial coronary perfusion. DEL-1 prevented aortic stiffness and abolished the progression of hypertension. Mechanistically, DEL-1 acted by inhibiting αvß3 integrin-dependent activation of pro-MMP2 in mice and in human isolated aorta. Moreover, DEL-1 stabilized αvß3 integrin-dependent CD25+FoxP3+ Treg numbers and IL-10 levels, which were associated with decreased recruitment of inflammatory cells and reduced production of proinflammatory cytokines in cardiovascular organs. The demonstrated effects and immune-modulating mechanisms of DEL-1 in abrogation of cardiovascular remodeling and progression of hypertension identify DEL-1 as a potential therapeutic factor.


Calcium-Binding Proteins/metabolism , Cell Adhesion Molecules/metabolism , Hypertension , Ventricular Remodeling , Animals , Cardiomegaly , Fibrosis , Hypertension/complications , Immunomodulation/genetics , Integrins , Mice , Ventricular Remodeling/genetics
3.
Hepatology ; 75(4): 881-897, 2022 04.
Article En | MEDLINE | ID: mdl-34519101

BACKGROUND AND AIMS: NAFLD is initiated by steatosis and can progress through fibrosis and cirrhosis to HCC. The RNA binding protein human antigen R (HuR) controls RNAs at the posttranscriptional level; hepatocyte HuR has been implicated in the regulation of diet-induced hepatic steatosis. The present study aimed to understand the role of hepatocyte HuR in NAFLD development and progression to fibrosis and HCC. APPROACH AND RESULTS: Hepatocyte-specific, HuR-deficient mice and control HuR-sufficient mice were fed either a normal diet or an NAFLD-inducing diet. Hepatic lipid accumulation, inflammation, fibrosis, and HCC development were studied by histology, flow cytometry, quantitative PCR, and RNA sequencing. The liver lipidome was characterized by lipidomics analysis, and the HuR-RNA interactions in the liver were mapped by RNA immunoprecipitation sequencing. Hepatocyte-specific, HuR-deficient mice displayed spontaneous hepatic steatosis and fibrosis predisposition compared to control HuR-sufficient mice. On an NAFLD-inducing diet, hepatocyte-specific HuR deficiency resulted in exacerbated inflammation, fibrosis, and HCC-like tumor development. A multi-omic approach, including lipidomics, transcriptomics, and RNA immunoprecipitation sequencing revealed that HuR orchestrates a protective network of hepatic-metabolic and lipid homeostasis-maintaining pathways. Consistently, HuR-deficient livers accumulated, already at steady state, a triglyceride signature resembling that of NAFLD livers. Moreover, up-regulation of secreted phosphoprotein 1 expression mediated, at least partially, fibrosis development in hepatocyte-specific HuR deficiency on an NAFLD-inducing diet, as shown by experiments using antibody blockade of osteopontin. CONCLUSIONS: HuR is a gatekeeper of liver homeostasis, preventing NAFLD-related fibrosis and HCC, suggesting that the HuR-dependent network could be exploited therapeutically.


Carcinoma, Hepatocellular , ELAV-Like Protein 1 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Carcinoma, Hepatocellular/pathology , ELAV-Like Protein 1/metabolism , Homeostasis , Inflammation/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Neoplasms/pathology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , RNA , Triglycerides/metabolism
4.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article En | MEDLINE | ID: mdl-34663697

Trained immunity defines long-lasting adaptations of innate immunity based on transcriptional and epigenetic modifications of myeloid cells and their bone marrow progenitors [M. Divangahi et al., Nat. Immunol. 22, 2-6 (2021)]. Innate immune cells, however, do not exclusively differentiate between foreign and self but also react to host-derived molecules referred to as alarmins. Extracellular "labile" heme, released during infections, is a bona fide alarmin promoting myeloid cell activation [M. P. Soares, M. T. Bozza, Curr. Opin. Immunol. 38, 94-100 (2016)]. Here, we report that labile heme is a previously unrecognized inducer of trained immunity that confers long-term regulation of lineage specification of hematopoietic stem cells and progenitor cells. In contrast to previous reports on trained immunity, essentially mediated by pathogen-associated molecular patterns, heme training depends on spleen tyrosine kinase signal transduction pathway acting upstream of c-Jun N-terminal kinases. Heme training promotes resistance to sepsis, is associated with the expansion of self-renewing hematopoetic stem cells primed toward myelopoiesis and to the occurrence of a specific myeloid cell population. This is potentially evoked by sustained activity of Nfix, Runx1, and Nfe2l2 and dissociation of the transcriptional repressor Bach2. Previously reported trained immunity inducers are, however, infrequently present in the host, whereas heme abundantly occurs during noninfectious and infectious disease. This difference might explain the vanishing protection exerted by heme training in sepsis over time with sustained long-term myeloid adaptations. Hence, we propose that trained immunity is an integral component of innate immunity with distinct functional differences on infectious disease outcome depending on its induction by pathogenic or endogenous molecules.


Epigenesis, Genetic , Heme/physiology , Immunity, Innate , Myelopoiesis , Animals , Humans , Mice
5.
J Clin Invest ; 131(19)2021 10 01.
Article En | MEDLINE | ID: mdl-34403362

The secreted protein developmental endothelial locus 1 (DEL-1) regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab-induced arthritis (CAIA) models. In both models, mice with endothelium-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, whereas arthritis was exacerbated in DEL-1-deficient mice. Compared with WT controls, mice with collagen VI promoter-driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited Tfh and germinal center B cell responses. Mechanistically, DEL-1 inhibited DC-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell-derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell-derived DEL-1 to restrain Tfh responses. DEL-1 may therefore be a promising therapeutic for the treatment of inflammatory arthritis.


Arthritis, Experimental/prevention & control , Calcium-Binding Proteins/physiology , Cell Adhesion Molecules/physiology , Lymphocyte Activation , T Follicular Helper Cells/immunology , Animals , Cell Differentiation , Female , Germinal Center/immunology , Lymphocyte Function-Associated Antigen-1/physiology , Male , Mice , Mice, Inbred C57BL , Stromal Cells/chemistry , T Follicular Helper Cells/cytology
6.
Blood ; 137(24): 3416-3427, 2021 06 17.
Article En | MEDLINE | ID: mdl-33619535

Orchestrated recruitment of neutrophils to inflamed tissue is essential during the initiation of inflammation. Inflamed areas are usually hypoxic, and adaptation to reduced oxygen pressure is typically mediated by hypoxia pathway proteins. However, it remains unclear how these factors influence the migration of neutrophils to and at the site of inflammation during their transmigration through the blood-endothelial cell barrier, as well as their motility in the interstitial space. Here, we reveal that activation of hypoxia-inducible factor 2 (HIF2α) as a result of a deficiency in HIF prolyl hydroxylase domain protein 2 (PHD2) boosts neutrophil migration specifically through highly confined microenvironments. In vivo, the increased migratory capacity of PHD2-deficient neutrophils resulted in massive tissue accumulation in models of acute local inflammation. Using systematic RNA sequencing analyses and mechanistic approaches, we identified RhoA, a cytoskeleton organizer, as the central downstream factor that mediates HIF2α-dependent neutrophil motility. Thus, we propose that the novel PHD2-HIF2α-RhoA axis is vital to the initial stages of inflammation because it promotes neutrophil movement through highly confined tissue landscapes.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Movement , Cellular Microenvironment , Neutrophils/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Inflammation/genetics , Inflammation/metabolism , Mice , Mice, Knockout , RNA-Seq
8.
Front Oncol ; 10: 581457, 2020.
Article En | MEDLINE | ID: mdl-33363012

Several lines of clinical and experimental evidence suggest that immune cell plasticity is a central player in tumorigenesis, tumor progression, and metastasis formation. Neutrophils are able to promote or inhibit tumor growth. Through their interaction with tumor cells or their crosstalk with other immune cell subsets in the tumor microenvironment, they modulate tumor cell survival. Here, we summarize current knowledge with regards to the mechanisms that underlie neutrophil-mediated effects on tumor establishment and metastasis development. We also discuss the tumor-mediated effects on granulopoiesis and neutrophil precursors in the bone marrow and the involvement of neutrophils in anti-tumor therapeutic modalities.

9.
Cell ; 183(3): 771-785.e12, 2020 10 29.
Article En | MEDLINE | ID: mdl-33125892

Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with ß-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of ß-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from ß-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of ß-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.


Granulocytes/immunology , Immunity, Innate , Neoplasms/immunology , Adaptive Immunity , Adoptive Transfer , Animals , Epigenesis, Genetic , Interferon Type I/metabolism , Mice, Inbred C57BL , Monocytes/metabolism , Neoplasms/pathology , Neutrophils/metabolism , Phenotype , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/metabolism , Transcription, Genetic , Transcriptome/genetics , beta-Glucans/metabolism
10.
Front Immunol ; 11: 553, 2020.
Article En | MEDLINE | ID: mdl-32296442

Efficient inflammation resolution is important not only for the termination of the inflammatory response but also for the restoration of tissue integrity. An integral process to resolution of inflammation is the phagocytosis of dying cells by macrophages, known as efferocytosis. This function is mediated by a complex and well-orchestrated network of interactions amongst specialized phagocytic receptors, bridging molecules, as well as "find-me" and "eat-me" signals. Efferocytosis serves not only as a waste disposal mechanism (clearance of the apoptotic cells) but also promotes a pro-resolving phenotype in efferocytic macrophages and thereby termination of inflammation. Alterations in cellular metabolism are critical for shaping the phenotype and function of efferocytic macrophages, thus, representing an important determinant of macrophage plasticity. Impaired efferocytosis can result in inflammation-associated pathologies or autoimmunity. The present mini review summarizes current knowledge regarding the mechanisms regulating macrophage efferocytosis during clearance of inflammation.


Apoptosis/immunology , Inflammation/immunology , Macrophages/immunology , Phagocytosis/immunology , Animals , Humans , Macrophages/metabolism
11.
FASEB J ; 34(2): 3336-3346, 2020 02.
Article En | MEDLINE | ID: mdl-31916652

In Type 1 Diabetes Mellitus (T1DM), leukocyte infiltration of the pancreatic islets and the resulting immune-mediated destruction of beta cells precede hyperglycemia and clinical disease symptoms. In this context, the role of the pancreatic endothelium as a barrier for autoimmunity- and inflammation-related destruction of the islets is not well studied. Here, we identified Robo4, expressed on endothelial cells, as a regulator of pancreatic vascular endothelial permeability during autoimmune diabetes. Circulating levels of Robo4 were upregulated in mice subjected to the Multiple Low-Dose Streptozotocin (MLDS) model of diabetes. Upon MLDS induction, Robo4-deficiency resulted in increased pancreatic vascular permeability, leukocyte infiltration to the islets and islet apoptosis, associated with reduced insulin levels and faster diabetes development. On the contrary, in vivo administration of Slit2 in mice modestly delayed the emergence of hyperglycaemia and ameliorated islet inflammation in MLDS-induced diabetes. Thus, Robo4-mediated endothelial barrier integrity reduces insulitis and islet destruction in autoimmune diabetes. Our findings highlight the importance of the endothelium as gatekeeper of pancreatic inflammation during T1DM development and may pave the way for novel Robo4-related therapeutic approaches for autoimmune diabetes.


Capillary Permeability , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Endothelial Cells/metabolism , Insulin-Secreting Cells/metabolism , Receptors, Cell Surface/metabolism , Animals , Apoptosis , Cell Line , Cells, Cultured , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/pathology , Endothelial Cells/pathology , Humans , Insulin-Secreting Cells/pathology , Mice , Mice, Inbred C57BL , Receptors, Cell Surface/blood , Receptors, Cell Surface/genetics
12.
Nat Immunol ; 20(1): 40-49, 2019 01.
Article En | MEDLINE | ID: mdl-30455459

Resolution of inflammation is essential for tissue homeostasis and represents a promising approach to inflammatory disorders. Here we found that developmental endothelial locus-1 (DEL-1), a secreted protein that inhibits leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and mouse periodontitis, waning of inflammation was correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium-urate-crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver X receptor-dependent macrophage reprogramming to a pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte-recruitment action to endothelial cell-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.


Carrier Proteins/metabolism , Inflammation/immunology , Macrophages/physiology , Neutrophils/immunology , Periodontitis/immunology , Adult , Animals , Calcium-Binding Proteins , Carrier Proteins/genetics , Cell Adhesion Molecules , Cellular Reprogramming , Cytokines/metabolism , Gene Expression Regulation , Humans , Inflammation/chemically induced , Intercellular Signaling Peptides and Proteins , K562 Cells , Liver X Receptors/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis
13.
Sci Rep ; 8(1): 11335, 2018 07 27.
Article En | MEDLINE | ID: mdl-30054579

Diabetes mellitus is a group of disorders characterized by prolonged high levels of circulating blood glucose. Type 1 diabetes is caused by decreased insulin production in the pancreas whereas type 2 diabetes may develop due to obesity and lack of exercise; it begins with insulin resistance whereby cells fail to respond properly to insulin and it may also progress to decreased insulin levels. The brain is an important target for insulin, and there is great interest in understanding how diabetes affects the brain. In addition to the direct effects of insulin on the brain, diabetes may also impact the brain through modulation of the inflammatory system. Here we investigate how perturbation of circulating insulin levels affects the expression of Hes3, a transcription factor expressed in neural stem and progenitor cells that is involved in tissue regeneration. Our data show that streptozotocin-induced ß-cell damage, high fat diet, as well as metformin, a common type 2 diabetes medication, regulate Hes3 levels in the brain. This work suggests that Hes3 is a valuable biomarker helping to monitor the state of endogenous neural stem and progenitor cells in the context of diabetes mellitus.


Aging/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/metabolism , Diet, High-Fat , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Metformin/administration & dosage , Nerve Tissue Proteins/metabolism , Streptozocin/toxicity , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation/drug effects , Insulin-Secreting Cells/drug effects , Male , Mice, Inbred C57BL , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Phenotype , Repressor Proteins
15.
Cell ; 172(1-2): 135-146.e9, 2018 01 11.
Article En | MEDLINE | ID: mdl-29328908

Innate immune cells can develop long-term memory after stimulation by microbial products during infections or vaccinations. Here, we report that metabolic signals can induce trained immunity. Pharmacological and genetic experiments reveal that activation of the cholesterol synthesis pathway, but not the synthesis of cholesterol itself, is essential for training of myeloid cells. Rather, the metabolite mevalonate is the mediator of training via activation of IGF1-R and mTOR and subsequent histone modifications in inflammatory pathways. Statins, which block mevalonate generation, prevent trained immunity induction. Furthermore, monocytes of patients with hyper immunoglobulin D syndrome (HIDS), who are mevalonate kinase deficient and accumulate mevalonate, have a constitutive trained immunity phenotype at both immunological and epigenetic levels, which could explain the attacks of sterile inflammation that these patients experience. Unraveling the role of mevalonate in trained immunity contributes to our understanding of the pathophysiology of HIDS and identifies novel therapeutic targets for clinical conditions with excessive activation of trained immunity.


Immunity, Innate , Immunologic Memory , Mevalonate Kinase Deficiency/immunology , Mevalonic Acid/metabolism , Monocytes/immunology , Animals , Cells, Cultured , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Receptor, IGF Type 1/metabolism
16.
Cell ; 172(1-2): 147-161.e12, 2018 01 11.
Article En | MEDLINE | ID: mdl-29328910

Trained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of ß-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1ß and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.


Immunity, Innate , Immunologic Memory , Myeloid Progenitor Cells/immunology , Animals , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Myeloid Progenitor Cells/drug effects , Myelopoiesis/immunology , beta-Glucans/pharmacology
17.
J Clin Invest ; 127(10): 3624-3639, 2017 Oct 02.
Article En | MEDLINE | ID: mdl-28846069

Hematopoietic stem cells (HSCs) remain mostly quiescent under steady-state conditions but switch to a proliferative state following hematopoietic stress, e.g., bone marrow (BM) injury, transplantation, or systemic infection and inflammation. The homeostatic balance between quiescence, self-renewal, and differentiation of HSCs is strongly dependent on their interactions with cells that constitute a specialized microanatomical environment in the BM known as the HSC niche. Here, we identified the secreted extracellular matrix protein Del-1 as a component and regulator of the HSC niche. Specifically, we found that Del-1 was expressed by several cellular components of the HSC niche, including arteriolar endothelial cells, CXCL12-abundant reticular (CAR) cells, and cells of the osteoblastic lineage. Del-1 promoted critical functions of the HSC niche, as it regulated long-term HSC (LT-HSC) proliferation and differentiation toward the myeloid lineage. Del-1 deficiency in mice resulted in reduced LT-HSC proliferation and infringed preferentially upon myelopoiesis under both steady-state and stressful conditions, such as hematopoietic cell transplantation and G-CSF- or inflammation-induced stress myelopoiesis. Del-1-induced HSC proliferation and myeloid lineage commitment were mediated by ß3 integrin on hematopoietic progenitors. This hitherto unknown Del-1 function in the HSC niche represents a juxtacrine homeostatic adaptation of the hematopoietic system in stress myelopoiesis.


Carrier Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Myelopoiesis , Stem Cell Niche , Stress, Physiological , Animals , Calcium-Binding Proteins , Carrier Proteins/genetics , Cell Adhesion Molecules , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Endothelial Cells/metabolism , Humans , Integrin beta3/genetics , Integrin beta3/metabolism , Intercellular Signaling Peptides and Proteins , Mice , Mice, Knockout
18.
J Leukoc Biol ; 102(3): 677-683, 2017 09.
Article En | MEDLINE | ID: mdl-28292945

Integrins constitute a large group of adhesion receptors that are formed as heterodimers of α and ß subunits. Their presence and activation status on the surface of leukocytes modulate a broad spectrum of processes in inflammation and immunity. This mini review critically outlines research advances with regard to the function of leukocyte integrins in regulating and integrating the onset and resolution of acute inflammation. Specifically, we summarize and discuss relevant, current literature that supports the multifunctional role of integrins and their partners. The latter include molecules that physically associate with integrins or regulate their activity in the context of the following: 1) leukocyte recruitment to an inflamed tissue, 2) recognition and phagocytosis of apoptotic neutrophils (efferocytosis), and 3) egress of efferocytic macrophages from the inflamed site to lymphoid tissues. The understanding of the fine-tuning mechanisms of the aforementioned processes by integrins and their functional partners may enable the design of therapeutic tools to counteract destructive inflammation and promote more efficient resolution of inflammation.


Integrins/immunology , Macrophages/immunology , Neutrophils/immunology , Phagocytosis , Animals , Humans , Inflammation/immunology
19.
Xenotransplantation ; 24(1)2017 01.
Article En | MEDLINE | ID: mdl-27677785

BACKGROUND: The complement system plays a crucial role in acute xenogeneic reactions after cardiac transplantation. We used an ex vivo perfusion model to investigate the effect of Cp40, a compstatin analog and potent inhibitor of complement at the level of C3. METHODS: Fifteen wild-type pig hearts were explanted, cardiopleged, and reperfused ex vivo after 150 minutes of cold ischemia. Hearts were challenged in a biventricular working heart mode to evaluate cardiac perfusion and function. In the treatment group (n=5), the complement cascade was blocked at the level of C3 using Cp40, using diluted human blood. Untreated human and porcine blood was used for controls. RESULTS: Throughout the perfusion, C3 activation was inhibited when Cp40 was used (mean of all time points: 1.11 ± 0.34% vs 3.12 ± 0.48% control activation; P<.01). Compared to xenoperfused controls, the cardiac index improved significantly in the treated group (6.5 ± 4.2 vs 3.5 ± 4.8 mL/min/g; P=.03, 180 minutes perfusion), while the concentration of lactate dehydrogenase as a maker for cell degradation was reduced in the perfusate (583 ± 187 U/mL vs 2108 ± 1145 U/mL, P=.02). Histological examination revealed less hemorrhage and edema, and immunohistochemistry confirmed less complement fragment deposition than in untreated xenoperfused controls. CONCLUSIONS: Cp40 efficiently prevents C3 activation of the complement system, resulting in reduced cell damage and preserved function in wild-type porcine hearts xenoperfused ex vivo. We suggest that this compstatin analog, which blocks all main pathways of complement activation, could be a beneficial perioperative treatment in preclinical and in future clinical xenotransplantation.


Complement Activation/immunology , Complement C3/metabolism , Heart Transplantation , Pyridones/metabolism , Animals , Graft Rejection/prevention & control , Heart , Heart Transplantation/methods , Humans , Myocardium/immunology , Swine , Transplantation, Heterologous/methods
20.
Ann Transl Med ; 4(14): 265, 2016 Jul.
Article En | MEDLINE | ID: mdl-27563652

Chronic inflammation has been linked to the initiation of carcinogenesis, as well as the advancement of established tumors. The polarization of the tumor inflammatory microenvironment can contribute to either the control, or the progression of the disease. The emerging participation of members of the complement cascade in several hallmarks of cancer, renders it a potential target for anti-tumor treatment. Moreover, the presence of complement regulatory proteins (CRPs) in most types of tumor cells is known to impede anti-tumor therapies. This review focuses on our current knowledge of complement's potential involvement in shaping the inflammatory tumor microenvironment and its role on the regulation of angiogenesis and hypoxia. Furthermore, we discuss approaches using complement-based therapies as an adjuvant in tumor immunotherapy.

...