Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(3): 2355-2362, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165966

RESUMEN

Thin layers of commonly used adhesion metals i.e., Cr and Ti were annealed to investigate and estimate their impact on the electrochemical properties of the carbon nanomaterials grown on top of them. The microstructure, surface chemistry, and electrochemical activities of these materials were evaluated and compared with those of as-deposited thin films. The results from X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, grazing incidence X-ray diffraction (GIXRD), time-of-flight elastic recoil detection analysis (TOF-ERDA), and conductive atomic force microscopy (C-AFM) indicated the formation of a catalytic graphite layer on Cr following annealing, while no such layer was formed on Ti. This is attributed to the formation of the Cr2O3 layer on annealed Cr, which acts as a barrier to carbon diffusion into the underlying Cr. Conversely, Ti exhibits a high solubility for both carbon and oxygen, preventing the formation of the graphite layer. Cyclic voltammetry results showed that annealed Cr electrodes are electrochemically active towards both dopamine (DA) and ascorbic acid (AA) while no electrochemical activity is exhibited by annealed Ti. Quantum chemical calculations suggested that the presence of carbon as graphene or an amorphous form is critical for the oxidation reaction of probes. These results are significant for comprehending how the distinct solubilities of typical interstitial solutes influence the microstructure of adhesion metal layers and consequently yield diverse electrochemical properties.

2.
Anal Chem ; 95(5): 2983-2991, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36700823

RESUMEN

One of the major challenges for in vivo electrochemical measurements of dopamine (DA) is to achieve selectivity in the presence of interferents, such as ascorbic acid (AA) and uric acid (UA). Complicated multimaterial structures and ill-defined pretreatments have been frequently utilized to enhance selectivity. The lack of control over the realized structures has prevented establishing associations between the achieved selectivity and the electrode structure. Owing to their easily tailorable structure, carbon nanofiber (CNF) electrodes have become promising materials for neurobiological applications. Here, a novel yet simple strategy to control the sensitivity and selectivity of CNF electrodes toward DA is reported. It consists of adjusting the lengths of CNF by modulating the growth phase during the fabrication process while keeping the surface chemistries similar. It was observed that the sensitivity of the CNF electrodes toward DA was enhanced with the increase in the fiber lengths. More importantly, the increase in the fiber length induced (i) an anodic shift in the DA oxidation peak and (ii) a cathodic shift in the AA oxidation peak. As the UA oxidation peak remained unaffected at high anodic potentials, the electrodes with long CNFs showed excellent selectivity. Electrodes without proper fibers showed only a single broad peak in the solution of AA, DA, and UA, completely lacking the ability to discriminate DA. Hence, the simple strategy of controlling CNF length without the need to carry out any complex chemical treatments provides us a feasible and robust route to fabricate electrode materials for neurotransmitter detection with excellent sensitivity and selectivity.


Asunto(s)
Dopamina , Nanofibras , Dopamina/química , Carbono/química , Técnicas Electroquímicas , Electrodos , Ácido Ascórbico/química , Ácido Úrico/química , Oxidación-Reducción
3.
ACS Omega ; 6(40): 26391-26403, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34660997

RESUMEN

Electrode fouling is a major factor that compromises the performance of biosensors in in vivo usage. It can be roughly classified into (i) electrochemical fouling, caused by the analyte and its reaction products, and (ii) biofouling, caused by proteins and other species in the measurement environment. Here, we examined the effect of electrochemical fouling [in phosphate buffer saline (PBS)], biofouling [in cell-culture media (F12-K) with and without proteins], and their combination on the redox reactions occurring on carbon-based electrodes possessing distinct morphologies and surface chemistry. The effect of biofouling on the electrochemistry of an outer sphere redox probe, [Ru(NH3)6]3+, was negligible. On the other hand, fouling had a marked effect on the electrochemistry of an inner sphere redox probe, dopamine (DA). We observed that the surface geometry played a major role in the extent of fouling. The effect of biofouling on DA electrochemistry was the worst on planar pyrolytic carbon, whereas the multiwalled carbon nanotube/tetrahedral amorphous carbon (MWCNT/ta-C), possessing spaghetti-like morphology, and carbon nanofiber (CNF/ta-C) electrodes were much less seriously affected. The blockage of the adsorption sites for DA by proteins and other components of biological media and electrochemical fouling components (byproducts of DA oxidation) caused rapid surface poisoning. PBS washing for 10 consecutive cycles at 50 mV/s did not improve the electrode performance, except for CNF/ta-C, which performed better after PBS washing. Overall, this study emphasizes the combined effect of biological and electrochemical fouling to be critical for the evaluation of the functionality of a sensor. Thus, electrodes possessing composite nanostructures showed less surface fouling in comparison to those possessing planar geometry.

4.
Infect Genet Evol ; 93: 104950, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34089911

RESUMEN

The Hantaan virus belongs to Bunyaviridae family, an emerging virus that is responsible for hemorrhagic fevers. The virus is distributed worldwide and as of now there is no successful antiviral drug or vaccine developed to protect against the viral infections. Immunization or vaccination is an alternative approach for the protection against viral infections. A cost effective and thermodynamically stable vaccine should be developed to prevent a future possible pandemic. In this study a vaccine candidate was designed against the Hantaan virus, multiple immunoinformatics and reverse vaccinology tools were utilized for the prediction of both B and T cell epitopes for Nuceloprotein, RNA dependent RNA polymerase L and Envelope protein of the Hantaan virus. The individual epitopes were modeled for docking with respective HLAs and a multi-epitopes subunit vaccine candidate was constructued by joining together carefully evaluated B and T cell epitopes with suitable linkers. The vaccine model was evaluated for several physiochameical parameters i.e. Molecular weight, instability index and aliphatic index among the others, followed by 3D modeling of the vaccine for docking with TLR-4. Based on previous studies, Human beta-defensin was liked at the N-terminus of the vaccine sequence as an adjuvant to enhance immunogenicity. The docked complexes of vaccine-TLR-4 were then evaluated for residual interactions. Moreover, to validate final vaccine construct, immune simulations was carried out by C-IMMSIM server. A natural immune reponse was predicted by the immune simulation analysis. In-silico cloning was carried out using E. coli as host resulting in 0.93 CAI value, which suggests that the vaccine construct will attain maximal expression in E. coli host. The vaccine designed in this study needs experimental verification to confirm the immunogenicity and efficacy of the vaccine and ultimately used against Hantaan virus associated infections.


Asunto(s)
Diseño de Fármacos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Virus Hantaan/inmunología , Vacunología , Vacunas Virales/inmunología , Biología Computacional , Vacunas de Subunidad/inmunología
5.
ACS Appl Mater Interfaces ; 11(32): 28657-28664, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31321967

RESUMEN

Tuning of the viscoelastic properties of supramolecular hydrogels to be used as biological material substrates in tissue engineering has become significantly relevant in recent years due to their ability to influence cell fate. In the quest to enhance the stability and mechanical properties of a derived C2-phenylalanine gelator (LPF), derivatives of the polysaccharide dextran were incorporated as additives to promote hydrogen bonding and π-π stacking with the gelator. Dextran was esterified to yield carboxymethyl dextran (CMDH), which was subsequently amidated to furnish amino dextran (AD), the resulting hybrid hydrogels were denoted as LPF-ADx and LPF-CMDHx, where x represents the amount of AD and CMDH (mg). The LPF gelator interacted with the carboxyl and amino functional groups of the CMDH and AD, respectively, through hydrogen bonding and π-π stacking, resulting in mechanically stable hydrogels. Morphological studies revealed that the hybrid hydrogels were formed as a result of dense highly branched thin and broad fibers for LPF-AD and LPF-CMDH, respectively. Rheological studies confirmed the superiority of the hybrid hydrogels over the neat hydrogel, where LPF-CMDH3 exhibited the best mechanical properties with an improved elastic modulus of 11 654 Pa over 1518 and 140 Pa for LPF-AD4.5 and LPF, respectively. The adhesion and spreading behavior of NIH 3T3 fibroblast cells were significantly improved on the LPF-CMDH3 substrate owing to their enhanced mechanical properties. The tuning of the mechanical properties of the therein hydrogels via the facile incorporation of biodegradable and biocompatible functionalized additives opens up avenues for strengthening the supposed weak supramolecular gelators and hence increasing their potential of being employed largely in the field of tissue engineering.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Hidrogeles , Fenilalanina , Ingeniería de Tejidos , Animales , Dextranos/química , Dextranos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Células 3T3 NIH , Fenilalanina/química , Fenilalanina/farmacología
6.
MethodsX ; 6: 417-423, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899678

RESUMEN

In order to widen the use of soft materials in tissue engineering and life sciences, hydrogels with improved mechanical properties and controlled chirality are critical to achieve. A methodology is presented to enhance the mechanical properties and gain the control of chirality of two component hydrogels by merely varying the solution pH. pH change has been used as a way to ionize the specific functionalities into positive and negative charges. These positive and negative charges are crucial to provide a surge of electrostatic interactions to the components, imparting the improvement in stability and regulating their optical activity. Our goal is to throw light on the significance of opposite charges in the hydrogels for achievement of desired properties. •Role of ionisable groups is crucial to control viscoelastic and optical properties of supramolecular hydrogels.•Increasing the pH of the solution increases the number of negative ions by affecting the ionisable moieties, which interact with the positive charges in the solution.•Zeta potential of both materials has been analysed to ensure the presence of charged species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...