Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 34: 101465, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37125077

RESUMEN

Neutrophils develop in the bone marrow (BM) from hematopoietic stem cells (HSCs) through a series of progenitor cells and mature neutrophils play a critical role in the human immune system. Previous studies revealed that tumor necrosis factor α (TNFα) produced by immature neutrophils contributes to HSCs development and vascular regeneration in the BM niche. However, the precise mechanism of TNFα production in immature neutrophils remains unclear. This study aims to assess the relationship between complement C3 activation and TNFα production from immature neutrophils. We investigated the regulatory mechanism of TNFα production by complement components in neutrophil-like HL60 cells. Flow cytometric analysis showed that C3a receptor (C3aR) and C3bi receptor (CR3, Mac-1, CD11b/CD18, integrin αMß2) are expressed on the surface of neutrophil-like HL60 cells. We found that zymosan-treated human serum leads to TNFα production in neutrophil-like HL60 cells, but not in human polymorphonuclear cells (PMNs). A C3-convertase inhibitor, compstatin suppresses TNFα production. These data suggest that the TNFα production is mediated by complement C3 activation. Furthermore, the TNFα production is enhanced by Ca2+ elevating agents, thapsigargin (TG), but is suppressed by treatment with Ca2+ chelators, EGTA, or BAPTA-AM. In addition, the soluble TNFα production is suppressed by treatment with immobilized-fibrinogen or -fibronectin. Thus, the TNFα production is enhanced by intracellular Ca2+ elevation and is negatively regulated by the interaction between the neutrophil-like HL60 cells and fibrinogen or fibronectin.

2.
Exp Cell Res ; 417(1): 113163, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447104

RESUMEN

Protein targets of polyADP-ribosylation undergo covalent modification with high-molecular-weight, branched poly(ADP-ribose) (PAR) of lengths up to 200 or more ADP-ribose residues derived from NAD+. PAR polymerase 1 (PARP1) is the most abundant and well-characterized enzyme involved in PAR biosynthesis. Extensive studies have been carried out to determine how polyADP-ribosylation (PARylation) regulates cell proliferation during cell cycle, with conflicting conclusions. Since significant activation of PARP1 occurs during cell lysis in vitro, we changed the standard method for cell lysis, and using our sensitive ELISA system, quantified without addition of a PAR glycohydrolase inhibitor and clarified that the PAR level is significantly higher in S phase than that in G1. Under normal condition in the absence of exogenous DNA-damaging agent, PAR turns over with a half-life of <40 s; consistent with significant decrease of NAD+ levels in S phase, which is rescued by PARP inhibitors, in line with the observed rapid turnover of PAR. PARP inhibitors delayed cell cycle in S phase and decreased cell proliferation. Our results underscore the importance of a suitable assay system to measure rapid PAR chain dynamics in living cells and aid our understanding of the function of PARylation during the cell cycle.


Asunto(s)
Poli Adenosina Difosfato Ribosa , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ciclo Celular , División Celular , Células HeLa , Humanos , NAD , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo
3.
Biophys Physicobiol ; 16: 59-67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30923663

RESUMEN

PolyADP-ribosylation (PARylation) is a posttranslational modification that is involved in the various cellular functions including DNA repair, genomic stability, and transcriptional regulation. PARylation is catalyzed by the poly(ADP-ribose) polymerase (PARP) family proteins, which mainly recognize damaged DNA and initiate repair processes. PARP inhibitors are expected to be novel anticancer drugs for breast and ovarian cancers having mutation in BRCA tumor suppressor genes. However the structure of intact (full-length) PARP is not yet known. We have produced and purified the full-length human PARP1 (h-PARP1), which is the major family member of PARPs, and analyzed it with single particle electron microscopy. The electron microscopic images and the reconstructed 3D density map revealed a dimeric configuration of the h-PARP1, in which two ring-shaped subunits are associated with two-fold symmetry. Although the PARP1 is hypothesized to form a dimer on damaged DNA, the quaternary structure of this protein is still controversial. The present result would provide the first structural evidence of the dimeric structure of PARP1.

4.
Structure ; 24(11): 1960-1971, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773688

RESUMEN

Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway.


Asunto(s)
ADN de Cadena Simple/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Pyrococcus abyssi/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Sitios de Unión , Reparación de la Incompatibilidad de ADN , ADN de Archaea/química , ADN de Archaea/metabolismo , ADN de Cadena Simple/química , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pyrococcus abyssi/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...