Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Sci Rep ; 14(1): 11402, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762561

Despite the therapeutic potential of chemogenetics, the method lacks comprehensive preclinical validation, hindering its progression to human clinical trials. We aimed to validate a robust but simple in vivo efficacy assay in rats which could support chemogenetic drug discovery by providing a quick, simple and reliable animal model. Key methodological parameters such as adeno-associated virus (AAV) serotype, actuator drug, dose, and application routes were investigated by measuring the food-intake-reducing effect of chemogenetic inhibition of the lateral hypothalamus (LH) by hM4D(Gi) designer receptor stimulation. Subcutaneous deschloroclozapine in rats transfected with AAV9 resulted in a substantial reduction of food-intake, comparable to the efficacy of exenatide. We estimated that the effect of deschloroclozapine lasts 1-3 h post-administration. AAV5, oral administration of deschloroclozapine, and clozapine-N-oxide were also effective but with slightly less potency. The strongest effect on food-intake occurred within the first 30 min after re-feeding, suggesting this as the optimal experimental endpoint. This study demonstrates that general chemogenetic silencing of the LH can be utilized as an optimal, fast and reliable in vivo experimental model for conducting preclinical proof-of-concept studies in order to validate the in vivo effectiveness of novel chemogenetic treatments. We also hypothesize based on our results that universal LH silencing with existing and human translatable genetic neuroengineering techniques might be a viable strategy to affect food intake and influence obesity.


Clozapine , Dependovirus , Eating , Hypothalamic Area, Lateral , Proof of Concept Study , Animals , Clozapine/analogs & derivatives , Clozapine/pharmacology , Rats , Eating/drug effects , Hypothalamic Area, Lateral/drug effects , Dependovirus/genetics , Male , Exenatide/pharmacology , Humans
2.
Biomed Pharmacother ; 167: 115572, 2023 Nov.
Article En | MEDLINE | ID: mdl-37742603

Humans rely on vision as their most important sense. This is accomplished by photoreceptors (PRs) in the retina that detect light but cannot function without the support and maintenance of the retinal pigment epithelium (RPE). In subretinal hemorrhage (SRH), blood accumulates between the neurosensory retina and the RPE or between the RPE and the choroid. Blood breakdown products subsequently damage PRs and the RPE and lead to poor vision and blindness. Hence, there is a high need for options to preserve the retina and visual functions. We conducted a systematic review of the literature in accordance with the PRISMA guidelines to identify the cell death mechanisms in RPE and PRs after SRH to deepen our understanding of the pathways involved. After screening 736 publications published until November 8, 2022, we identified 19 records that assessed cell death in PRs and/or RPE in experimental models of SRH. Among the different cell death mechanisms, apoptosis was the most widely investigated mechanism (11 records), followed by ferroptosis (4), whereas necroptosis, pyroptosis, and lysosome-dependent cell death were only assessed in one study each. We discuss different therapeutic options that were assessed in these studies, including the removal of the hematoma/iron chelation, cytoprotection, anti-inflammatory agents, and antioxidants. Further systematic investigations will be necessary to determine the exact cell death mechanisms after SRH with respect to different blood breakdown components, cell types, and time courses. This will form the basis for the development of novel treatment options for SRH.


Retina , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Cell Death , Photoreceptor Cells , Hemorrhage
3.
Biomolecules ; 13(7)2023 07 13.
Article En | MEDLINE | ID: mdl-37509155

Gap junctions (GJs) are not static bridges; instead, GJs as well as the molecular building block connexin (Cx) proteins undergo major expression changes in the degenerating retinal tissue. Various progressive diseases, including retinitis pigmentosa, glaucoma, age-related retinal degeneration, etc., affect neurons of the retina and thus their neuronal connections endure irreversible changes as well. Although Cx expression changes might be the hallmarks of tissue deterioration, GJs are not static bridges and as such they undergo adaptive changes even in healthy tissue to respond to the ever-changing environment. It is, therefore, imperative to determine these latter adaptive changes in GJ functionality as well as in their morphology and Cx makeup to identify and distinguish them from alterations following tissue deterioration. In this review, we summarize GJ alterations that take place in healthy retinal tissue and occur on three different time scales: throughout the entire lifespan, during daily changes and as a result of quick changes of light adaptation.


Connexins , Gap Junctions , Animals , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , Retina/metabolism , Neurons/metabolism , Mammals/metabolism
4.
Int J Mol Sci ; 24(10)2023 May 15.
Article En | MEDLINE | ID: mdl-37240098

Vision is the most important sensory modality in vertebrates in general, and as such, it is the most feared sense to lose [...].


Retinal Degeneration , Animals , Humans , Retinal Degeneration/genetics , Vertebrates , Vision, Ocular
5.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article En | MEDLINE | ID: mdl-36901880

Traumatic brain injury (TBI) is among the main causes of sudden death after head trauma. These injuries can result in severe degeneration and neuronal cell death in the CNS, including the retina, which is a crucial part of the brain responsible for perceiving and transmitting visual information. The long-term effects of mild-repetitive TBI (rmTBI) are far less studied thus far, even though damage induced by repetitive injuries occurring in the brain is more common, especially amongst athletes. rmTBI can also have a detrimental effect on the retina and the pathophysiology of these injuries is likely to differ from severe TBI (sTBI) retinal injury. Here, we show how rmTBI and sTBI can differentially affect the retina. Our results indicate an increase in the number of activated microglial cells and Caspase3-positive cells in the retina in both traumatic models, suggesting a rise in the level of inflammation and cell death after TBI. The pattern of microglial activation appears distributed and widespread but differs amongst the various retinal layers. sTBI induced microglial activation in both the superficial and deep retinal layers. In contrast to sTBI, no significant change occurred following the repetitive mild injury in the superficial layer, only the deep layer (spanning from the inner nuclear layer to the outer plexiform layer) shows microglial activation. This difference suggests that alternate response mechanisms play a role in the case of the different TBI incidents. The Caspase3 activation pattern showed a uniform increase in both the superficial and deep layers of the retina. This suggests a different action in the course of the disease in sTBI and rmTBI models and points to the need for new diagnostic procedures. Our present results suggest that the retina might serve as such a model of head injuries since the retinal tissue reacts to both forms of TBI and is the most accessible part of the human brain.


Brain Concussion , Brain Injuries, Traumatic , Caspase 3 , Animals , Humans , Brain Concussion/metabolism , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Inflammation/metabolism , Microglia/metabolism , Retina/metabolism
7.
Cells ; 11(5)2022 02 25.
Article En | MEDLINE | ID: mdl-35269432

Retinal ganglion cells (RGCs) encrypt stimulus features of the visual scene in action potentials and convey them toward higher visual centers in the brain. Although there are many visual features to encode, our recent understanding is that the ~46 different functional subtypes of RGCs in the retina share this task. In this scheme, each RGC subtype establishes a separate, parallel signaling route for a specific visual feature (e.g., contrast, the direction of motion, luminosity), through which information is conveyed. The efficiency of encoding depends on several factors, including signal strength, adaptational levels, and the actual efficacy of the underlying retinal microcircuits. Upon collecting inputs across their respective receptive field, RGCs perform further analysis (e.g., summation, subtraction, weighting) before they generate the final output spike train, which itself is characterized by multiple different features, such as the number of spikes, the inter-spike intervals, response delay, and the rundown time (transience) of the response. These specific kinetic features are essential for target postsynaptic neurons in the brain in order to effectively decode and interpret signals, thereby forming visual perception. We review recent knowledge regarding circuit elements of the mammalian retina that participate in shaping RGC response transience for optimal visual signaling.


Retina , Retinal Ganglion Cells , Action Potentials , Animals , Brain , Mammals , Visual Perception
8.
Int J Mol Sci ; 22(19)2021 Sep 27.
Article En | MEDLINE | ID: mdl-34638759

Vision is our primary sense as the human eye is the gateway for more than 65% of information reaching the human brain. Today's increased exposure to different wavelengths and intensities of light from light emitting diode (LED) sources could induce retinal degeneration and accompanying neuronal cell death. Damage induced by chronic phototoxic reactions occurring in the retina accumulates over years and it has been suggested as being responsible for the etiology of many debilitating ocular conditions. In this work, we examined how LED stimulation affects vision by monitoring changes in the expression of death and survival factors as well as microglial activation in LED-induced damage (LID) of the retinal tissue. We found an LED-exposure-induced increase in the mRNA levels of major apoptosis-related markers BAX, Bcl-2, and Caspase-3 and accompanying widespread microglial and Caspase-3 activation. Everyday LED light exposure was accounted for in all the described changes in the retinal tissue of mice in this study, indicating that overuse of non-filtered direct LED light can have detrimental effects on the human retina as well.


Caspase 3/metabolism , Light/adverse effects , Microglia/metabolism , Retina/metabolism , Retinal Degeneration/metabolism , Animals , Humans , Mice , Microglia/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Retina/pathology , Retinal Degeneration/pathology , bcl-2-Associated X Protein/metabolism
9.
Cells ; 10(9)2021 09 12.
Article En | MEDLINE | ID: mdl-34572046

The retinas of many species show regional specialisations that are evident in the differences in the processing of visual input from different parts of the visual field. Regional specialisation is thought to reflect an adaptation to the natural visual environment, optical constraints, and lifestyle of the species. Yet, little is known about regional differences in synaptic circuitry. Here, we were interested in the topographical distribution of connexin-36 (Cx36), the major constituent of electrical synapses in the retina. We compared the retinas of mice, rats, and cats to include species with different patterns of regional specialisations in the analysis. First, we used the density of Prox1-immunoreactive amacrine cells as a marker of any regional specialisation, with higher cell density signifying more central regions. Double-labelling experiments showed that Prox1 is expressed in AII amacrine cells in all three species. Interestingly, large Cx36 plaques were attached to about 8-10% of Prox1-positive amacrine cell somata, suggesting the strong electrical coupling of pairs or small clusters of cell bodies. When analysing the regional changes in the volumetric density of Cx36-immunoreactive plaques, we found a tight correlation with the density of Prox1-expressing amacrine cells in the ON, but not in the OFF sublamina in all three species. The results suggest that the relative contribution of electrical synapses to the ON- and OFF-pathways of the retina changes with retinal location, which may contribute to functional ON/OFF asymmetries across the visual field.


Amacrine Cells/physiology , Connexins/metabolism , Dendrites/physiology , Electrical Synapses/physiology , Gap Junctions/physiology , Homeodomain Proteins/metabolism , Retina/physiology , Tumor Suppressor Proteins/metabolism , Amacrine Cells/cytology , Animals , Connexins/genetics , Female , Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Retina/cytology , Tumor Suppressor Proteins/genetics , Gap Junction delta-2 Protein
10.
Neural Regen Res ; 16(10): 1911-1920, 2021 Oct.
Article En | MEDLINE | ID: mdl-33642359

Vision altering diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, myopia, retinal vascular disease, traumatic brain injuries and others cripple many lives and are projected to continue to cause anguish in the foreseeable future. Gap junctions serve as an emerging target for neuromodulation and possible regeneration as they directly connect healthy and/or diseased cells, thereby playing a crucial role in pathophysiology. Since they are permeable for macromolecules, able to cross the cellular barriers, they show duality in illness as a cause and as a therapeutic target. In this review, we take recent advancements in gap junction neuromodulation (pharmacological blockade, gene therapy, electrical and light stimulation) into account, to show the gap junction's role in neuronal cell death and the possible routes of rescuing neuronal and glial cells in the retina succeeding illness or injury.

11.
Cell Discov ; 6: 39, 2020.
Article En | MEDLINE | ID: mdl-32566247

Functional hyperemia, or the matching of blood flow with activity, directs oxygen and nutrients to regionally firing neurons. The mechanisms responsible for this spatial accuracy remain unclear but are critical for brain function and establish the diagnostic resolution of BOLD-fMRI. Here, we described a mosaic of pericytes, the vasomotor capillary cells in the living retina. We then tested whether this net of pericytes and surrounding neuroglia predicted a connectivity map in response to sensory stimuli. Surprisingly, we found that these connections were not only selective across cell types, but also highly asymmetric spatially. First, pericytes connected predominantly to other neighboring pericytes and endothelial cells, and less to arteriolar smooth muscle cells, and not to surrounding neurons or glia. Second, focal, but not global stimulation evoked a directional vasomotor response by strengthening connections along the feeding vascular branch. This activity required local NO signaling and occurred by means of direct coupling via gap junctions. By contrast, bath application of NO or diabetes, a common microvascular pathology, not only weakened the vascular signaling but also abolished its directionality. We conclude that the exclusivity of neurovascular interactions may thus establish spatial accuracy of blood delivery with the precision of the neuronal receptive field size, and is disrupted early in diabetes.

12.
Int J Mol Sci ; 21(7)2020 Apr 05.
Article En | MEDLINE | ID: mdl-32260484

The nervous system demands an adequate oxygen and metabolite exchange, making pericytes (PCs), the only vasoactive cells on the capillaries, essential to neural function. Loss of PCs is a hallmark of multiple diseases, including diabetes, Alzheimer's, amyotrophic lateral sclerosis (ALS) and Parkinson's. Platelet-derived growth factor receptors (PDGFRs) have been shown to be critical to PC function and survival. However, how PDGFR-mediated PC activity affects vascular homeostasis is not fully understood. Here, we tested the hypothesis that imatinib, a chemotherapeutic agent and a potent PDGFR inhibitor, alters PC distribution and thus induces vascular atrophy. We performed a morphometric analysis of the vascular elements in sham control and imatinib-treated NG2-DsRed mice. Vascular morphology and the integrity of the blood-retina barrier (BRB) were evaluated using blood albumin labeling. We found that imatinib decreased the number of PCs and blood vessel (BV) coverage in all retinal vascular layers; this was accompanied by a shrinkage of BV diameters. Surprisingly, the total length of capillaries was not altered, suggesting a preferential effect of imatinib on PCs. Furthermore, blood-retina barrier disruption was not evident. In conclusion, our data suggest that imatinib could help in treating neurovascular diseases and serve as a model for PC loss, without BRB disruption.


Blood-Retinal Barrier/drug effects , Imatinib Mesylate/pharmacology , Pericytes/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Blood-Retinal Barrier/cytology , Mice , Mice, Inbred C57BL , Pericytes/metabolism , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/metabolism
13.
Cells ; 9(4)2020 03 25.
Article En | MEDLINE | ID: mdl-32218175

The most prevalent Ca2+-buffer proteins (CaBPs: parvalbumin-PV; calbindin-CaB; calretinin-CaR) are widely expressed by various neurons throughout the brain, including the retinal ganglion cells (RGCs). Even though their retinal expression has been extensively studied, a coherent assessment of topographical variations is missing. To examine this, we performed immunohistochemistry (IHC) in mouse retinas. We found variability in the expression levels and cell numbers for CaR, with stronger and more numerous labels in the dorso-central area. CaBP+ cells contributed to RGCs with all soma sizes, indicating heterogeneity. We separated four to nine RGC clusters in each area based on expression levels and soma sizes. Besides the overall high variety in cluster number and size, the peripheral half of the temporal retina showed the greatest cluster number, indicating a better separation of RGC subtypes there. Multiple labels showed that 39% of the RGCs showed positivity for a single CaBP, 30% expressed two CaBPs, 25% showed no CaBP expression, and 6% expressed all three proteins. Finally, we observed an inverse relation between CaB and CaR expression levels in CaB/CaR dual- and CaB/CaR/PV triple-labeled RGCs, suggesting a mutual complementary function.


Calcium-Binding Proteins/metabolism , Calcium/metabolism , Proteins/metabolism , Retinal Ganglion Cells/metabolism , Animals , Cluster Analysis , Male , Mice , Mice, Inbred C57BL
14.
Sci Rep ; 9(1): 15110, 2019 10 22.
Article En | MEDLINE | ID: mdl-31641196

In the visual system, retinal ganglion cells (RGCs) of various subtypes encode preprocessed photoreceptor signals into a spike output which is then transmitted towards the brain through parallel feature pathways. Spike timing determines how each feature signal contributes to the output of downstream neurons in visual brain centers, thereby influencing efficiency in visual perception. In this study, we demonstrate a marked population-wide variability in RGC response latency that is independent of trial-to-trial variability and recording approach. RGC response latencies to simple visual stimuli vary considerably in a heterogenous cell population but remain reliable when RGCs of a single subtype are compared. This subtype specificity, however, vanishes when the retinal circuitry is bypassed via direct RGC electrical stimulation. This suggests that latency is primarily determined by the signaling speed through retinal pathways that provide subtype specific inputs to RGCs. In addition, response latency is significantly altered when GABA inhibition or gap junction signaling is disturbed, which further supports the key role of retinal microcircuits in latency tuning. Finally, modulation of stimulus parameters affects individual RGC response delays considerably. Based on these findings, we hypothesize that retinal microcircuits fine-tune RGC response latency, which in turn determines the context-dependent weighing of each signal and its contribution to visual perception.


Reaction Time/physiology , Retina/physiology , Signal Transduction , Animals , Calcium Signaling/radiation effects , Gap Junctions/radiation effects , Light , Mice, Inbred C57BL , Neural Inhibition/radiation effects , Photic Stimulation , Reaction Time/radiation effects , Retina/radiation effects , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Signal Transduction/radiation effects
15.
Brain Struct Funct ; 224(6): 2183-2197, 2019 Jul.
Article En | MEDLINE | ID: mdl-31172263

Connexin-36 (Cx36) is the major constituent of mammalian retinal gap junctions positioned in key signal pathways. Here, we examined the laminar and large-scale topographical distribution of Cx36 punctate immunolabels in the retina of the cat, a classical model of the mammalian visual system. Calretinin-immunoreactive (CaR-IR) cell populations served to outline the nuclear and plexiform layers and to stain specific neuronal populations. CaR-IR cells included horizontal cells in the outer retina, numerous amacrine cells, and scattered cells in the ganglion cell layer. Cx36-IR plaques were found among horizontal cell dendrites albeit without systematic colocalization of the two labels. Diffuse Cx36 immunoreactivity was found in the cytoplasm of AII amacrine cells, but no colocalization of Cx36 plaques was observed with either the perikarya or the long varicose dendrites of the CaR-IR non-AII amacrine cells. Cx36 puncta were seen throughout the entire inner plexiform layer showing their highest density in the ON sublamina. The densities of AII amacrine cell bodies and Cx36 plaques in the ON sublamina were strongly correlated across a wide range of eccentricities suggesting their anatomical association. However, the high number of plaques per AII cell suggests that a considerable fraction of Cx36 gap junctions in the ON sublamina is formed by other cell types than AII amacrine cells drawing attention to extensive but less studied electrically coupled networks.


Connexins/metabolism , Dendrites/metabolism , Retina/metabolism , Visual Pathways/physiology , Amacrine Cells/metabolism , Animals , Calbindin 2/metabolism , Cats , Gap Junctions/metabolism , Immunohistochemistry/methods , Retinal Rod Photoreceptor Cells/metabolism , Gap Junction delta-2 Protein
16.
Int J Mol Sci ; 20(9)2019 May 07.
Article En | MEDLINE | ID: mdl-31067641

Ca2+-binding buffer proteins (CaBPs) are widely expressed by various neurons throughout the central nervous system (CNS), including the retina. While the expression of CaBPs by photoreceptors, retinal interneurons and the output ganglion cells in the mammalian retina has been extensively studied, a general description is still missing due to the differences between species, developmental expression patterns and study-to-study discrepancies. Furthermore, CaBPs are occasionally located in a compartment-specific manner and two or more CaBPs can be expressed by the same neuron, thereby sharing the labor of Ca2+ buffering in the intracellular milieu. This article reviews this topic by providing a framework on CaBP functional expression by neurons of the mammalian retina with an emphasis on human and mouse retinas and the three most abundant and extensively studied buffer proteins: parvalbumin, calretinin and calbindin.


Calbindins/genetics , Retinal Neurons/metabolism , Animals , Calbindins/metabolism , Humans , Mice , Retinal Neurons/classification
17.
J Comp Neurol ; 527(16): 2675-2693, 2019 11 01.
Article En | MEDLINE | ID: mdl-30950036

In the retina, diverse functions of neuronal gap junctions (GJs) have been established. However, the distribution and function of vascular GJs are less clear. Here in the mouse retina whole mounts, we combined structural immunohistochemical analysis and a functional assessment of cellular coupling with a GJ-permeable tracer Neurobiotin to determine distribution patterns of three major vascular connexins. We found that Cx43 was expressed in punctate fashion on astroglia, surrounding all types of blood vessels and in continuous string-like structures along endothelial cell contacts in specialized regions of the vascular tree. Specifically, these Cx43-positive strings originated at the finest capillaries and extended toward the feeding artery. As this structural arrangement promoted strong and exclusive coupling of pericytes and endothelial cells along the corresponding branch, we termed this region a "vascular relay." Cx40 expression was found predominantly along the endothelial cell contacts of the primary arteries and did not overlap with Cx43-positive strings. At their occupied territories, Cx43 and Cx40 clustered with tight junctions and, to a lesser extent, with adhesion contacts, both key elements of the blood-retina barrier. Finally, Cx37 puncta were associated with the entire surface of both mural and endothelial cells across all regions of the vascular tree. This combinatorial analysis of vascular connexins and identification of the vascular relay region will serve as a structural foundation for future studies of neurovascular signaling in health and disease.


Gap Junctions/metabolism , Retina/metabolism , Retinal Vessels/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Cell Communication/physiology , Connexin 43/metabolism , Connexins/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Mice, Transgenic , Retina/cytology , Vasomotor System/cytology , Vasomotor System/metabolism , Gap Junction alpha-5 Protein , Gap Junction alpha-4 Protein
18.
PLoS One ; 12(9): e0183436, 2017.
Article En | MEDLINE | ID: mdl-28898257

Retinal ganglion cells (RGC) have been described to react to light stimuli either by producing short bursts of spikes or by maintaining a longer, continuous train of action potentials. Fast, quickly decaying responses are considered to be transient in nature and encode information about movement and direction, while cell responses that show a slow, drawn-out response fall into the sustained category and are thought to be responsible for carrying information related to color and contrast. Multiple approaches have been introduced thus far to measure and determine response transiency. In this study, we adopted and slightly modified a method described by Zeck and Masland to characterize RGC response transiency values and compare them to those obtained by alternative methods. As the first step, RGC spike responses were elicited by light stimulation and peristimulus time histograms (PSTHs) were generated. PSTHs then were used to calculate the time constant (PSTHτ approach). We show that this method is comparable to or more reliable than alternative approaches to describe the temporal characteristics of RGC light responses. In addition, we also show that PSTHτ-s are compatible with time constants measured on RGC and/or bipolar cell graded potentials; thus they are suitable for studying signaling through parallel retinal pathways.


Action Potentials , Retinal Ganglion Cells/physiology , Animals , Extracellular Space , Intracellular Space , Light , Mice , Photic Stimulation , Reproducibility of Results , Retinal Ganglion Cells/radiation effects , Signal Transduction
19.
J Neurosci ; 37(32): 7580-7594, 2017 08 09.
Article En | MEDLINE | ID: mdl-28674171

Adequate blood flow is essential to brain function, and its disruption is an early indicator in diseases, such as stroke and diabetes. However, the mechanisms contributing to this impairment remain unclear. To address this gap, in the diabetic and nondiabetic male mouse retina, we combined an unbiased longitudinal assessment of vasomotor activity along a genetically defined vascular network with pharmacological and immunohistochemical analyses of pericytes, the capillary vasomotor elements. In nondiabetic retina, focal stimulation of a pericyte produced a robust vasomotor response, which propagated along the blood vessel with increasing stimulus. In contrast, the magnitude, dynamic range, a measure of fine vascular diameter control, and propagation of vasomotor response were diminished in diabetic retinas from streptozotocin-treated mice. These functional changes were linked to several mechanisms. We found that density of pericytes and their sensitivity to stimulation were reduced in diabetes. The impaired response propagation from the stimulation site was associated with lower expression of connexin43, a major known gap junction unit in vascular cells. Indeed, selective block of gap junctions significantly reduced propagation but not initiation of vasomotor response in the nondiabetic retina. Our data establish the mechanisms for fine local regulation of capillary diameter by pericytes and a role for gap junctions in vascular network interactions. We show how disruption of this balance contributes to impaired vasomotor control in diabetes.SIGNIFICANCE STATEMENT Identification of mechanisms governing capillary blood flow in the CNS and how they are altered in disease provides novel insight into early states of neurological dysfunction. Here, we present physiological and anatomical evidence that both intact pericyte function as well as gap junction-mediated signaling across the vascular network are essential for proper capillary diameter control and vasomotor function. Changes to capillary blood flow precede other anatomical and functional hallmarks of diabetes establishing a significant window for prevention and treatment.


Connexin 43/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Gap Junctions/metabolism , Pericytes/metabolism , Retinal Vessels/metabolism , Animals , Blood Flow Velocity/physiology , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/pathology , Gap Junctions/pathology , Male , Mice , Mice, Inbred C57BL , Retinal Vessels/pathology
20.
Front Cell Neurosci ; 11: 65, 2017.
Article En | MEDLINE | ID: mdl-28337128

Much knowledge about interconnection of human retinal neurons is inferred from results on animal models. Likewise, there is a lack of information on human retinal electrical synapses/gap junctions (GJ). Connexin36 (Cx36) forms GJs in both the inner and outer plexiform layers (IPL and OPL) in most species including humans. However, a comparison of Cx36 GJ distribution in retinas of humans and popular animal models has not been presented. To this end a multiple-species comparison was performed in retinas of 12 mammals including humans to survey the Cx36 distribution. Areas of retinal specializations were avoided (e.g., fovea, visual streak, area centralis), thus observed Cx36 distribution differences were not attributed to these species-specific architecture of central retinal areas. Cx36 was expressed in both synaptic layers in all examined retinas. Cx36 plaques displayed an inhomogenous IPL distribution favoring the ON sublamina, however, this feature was more pronounced in the human, swine and guinea pig while it was less obvious in the rabbit, squirrel monkey, and ferret retinas. In contrast to the relative conservative Cx36 distribution in the IPL, the labels in the OPL varied considerably among mammals. In general, OPL plaques were rare and rather small in rod dominant carnivores and rodents, whereas the human and the cone rich guinea pig retinas displayed robust Cx36 labels. This survey presented that the human retina displayed two characteristic features, a pronounced ON dominance of Cx36 plaques in the IPL and prevalent Cx36 plaque conglomerates in the OPL. While many species showed either of these features, only the guinea pig retina shared both. The observed similarities and subtle differences in Cx36 plaque distribution across mammals do not correspond to evolutionary distances but may reflect accomodation to lifestyles of examined species.

...