Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203027

RESUMEN

Glioblastoma multiforme (GBM) is a highly aggressive and fatal primary brain tumor. The resistance of GBM to conventional treatments is attributed to factors such as the blood-brain barrier, tumor heterogeneity, and treatment-resistant stem cells. Current therapeutic efforts show limited survival benefits, emphasizing the urgent need for novel treatments. In this context, natural anti-cancer extracts and especially animal venoms have garnered attention for their potential therapeutic benefits. Bee venom in general and that of the Middle Eastern bee, Apis mellifera syriaca in particular, has been shown to have cytotoxic effects on various cancer cell types, but not glioblastoma. Therefore, this study aimed to explore the potential of A. mellifera syriaca venom as a selective anti-cancer agent for glioblastoma through in vitro and in vivo studies. Our results revealed a strong cytotoxic effect of A. mellifera syriaca venom on U87 glioblastoma cells, with an IC50 of 14.32 µg/mL using the MTT test and an IC50 of 7.49 µg/mL using the LDH test. Cells treated with the bee venom became permeable to propidium iodide without showing any signs of early apoptosis, suggesting compromised membrane integrity but not early apoptosis. In these cells, poly (ADP-ribose) polymerase (PARP) underwent proteolytic cleavage similar to that seen in necrosis. Subsequent in vivo investigations demonstrated a significant reduction in the number of U87 cells in mice following bee venom injection, accompanied by a significant increase in cells expressing caspase-3, suggesting the occurrence of cellular apoptosis. These findings highlight the potential of A. mellifera syriaca venom as a therapeutically useful tool in the search for new drug candidates against glioblastoma and give insights into the molecular mechanism through which the venom acts on cancer cells.


Asunto(s)
Antineoplásicos , Apoptosis , Venenos de Abeja , Glioblastoma , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Animales , Venenos de Abeja/farmacología , Venenos de Abeja/química , Humanos , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Abejas , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
2.
Biology (Basel) ; 13(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38666832

RESUMEN

The study of neuroarchitecture is concerned with the significant effects of architecture on human behavior, emotions and thought processes. This review explores the intricate relationship between the brain and perceived environments, focusing on the roles of the anterior cingulate cortex (ACC) and parahippocampal place area (PPA) in processing architectural stimuli. It highlights the importance of mirror neurons in generating empathetic responses to our surroundings and discusses how architectural elements like lighting, color, and space layout significantly impact emotional and cognitive experiences. The review also presents insights into the concept of cognitive maps and spatial navigation, emphasizing the role of architecture in facilitating wayfinding and orientation. Additionally, it addresses how neuroarchitecture can be applied to enhance learning and healing environments, drawing upon principles from the Reggio Emilia approach and considerations for designing spaces for the elderly and those with cognitive impairments. Overall, this review offers a neuroscientific basis for understanding how human cognition, emotions, spatial navigation, and well-being are influenced by architectural design.

3.
Antioxid Redox Signal ; 41(1-3): 152-180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38504589

RESUMEN

Oxidative stress is involved in the development of several pathologies. The different reactive oxygen species (ROS) produced during oxidative stress are at the origin of redox post-translational modifications (PTMs) on proteins and impact nucleic acids and lipids. This review provides an overview of recent data on cysteine and methionine oxidation and protein carbonylation following oxidative stress in a pathological context. Oxidation, like nitration, is a selective process and not all proteins are impacted. It depends on multiple factors, including amino acid environment, accessibility, and physical and chemical properties, as well as protein structures. Thiols can undergo reversible oxidations and others that are irreversible. On the contrary, carbonylation represents irreversible PTM. To date, hundreds of proteins were shown to be modified by ROS and reactive nitrogen species (RNS). We reviewed recent advances in the impact of redox-induced PTMs on protein functions and activity, as well as its involvement in disease development or treatment. These data show a complex situation of the involvement of redox PTM on the function of targeted proteins. Many proteins can have their activity decreased by the oxidation of cysteine thiols or methionine S-methyl thioethers, while for other proteins, this oxidation will be activating. This complexity of redox PTM regulation suggests that a global antioxidant therapeutic approach, as often proposed, is unlikely to be effective. However, the specificity of the effect obtained by targeting a cysteine or methionine residue to be able to inactivate or activate a particular protein represents a major interest if it is possible to consider this targeting from a therapeutic point of view with our current pharmacological tools. Antioxid. Redox Signal. 41, 152-180.


Asunto(s)
Oxidación-Reducción , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Metionina/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Cisteína/metabolismo , Proteínas/metabolismo , Proteínas/química , Carbonilación Proteica
4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396772

RESUMEN

The interplay between metal ion binding and the activity of thiol proteins, particularly within the protein disulfide isomerase family, remains an area of active investigation due to the critical role that these proteins play in many vital processes. This research investigates the interaction between recombinant human PDIA1 and zinc ions, focusing on the subsequent implications for PDIA1's conformational stability and enzymatic activity. Employing isothermal titration calorimetry and differential scanning calorimetry, we systematically compared the zinc binding capabilities of both oxidized and reduced forms of PDIA1 and assessed the structural consequences of this interaction. Our results demonstrate that PDIA1 can bind zinc both in reduced and oxidized states, but with significantly different stoichiometry and more pronounced conformational effects in the reduced form of PDIA1. Furthermore, zinc binding was observed to inhibit the catalytic activity of reduced-PDIA1, likely due to induced alterations in its conformation. These findings unveil a potential regulatory mechanism in PDIA1, wherein metal ion binding under reductive conditions modulates its activity. Our study highlights the potential role of zinc in regulating the catalytic function of PDIA1 through conformational modulation, suggesting a nuanced interplay between metal binding and protein stability in the broader context of cellular redox regulation.


Asunto(s)
Procolágeno-Prolina Dioxigenasa , Proteína Disulfuro Isomerasas , Humanos , Oxidación-Reducción , Procolágeno-Prolina Dioxigenasa/metabolismo , Unión Proteica , Proteína Disulfuro Isomerasas/metabolismo , Zinc/química , Zinc/metabolismo
5.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894731

RESUMEN

Tau protein has been described for several decades as a promoter of tubulin assembly into microtubules. Dysregulation or alterations in Tau expression have been related to various brain cancers, including the highly aggressive and lethal brain tumor glioblastoma multiform (GBM). In this respect, Tau holds significant promise as a target for the development of novel therapies. Here, we examined the structure-activity relationship of a new series of seventeen 2-aminothiazole-fused to flavonoid hybrid compounds (TZF) on Tau binding, Tau fibrillation, and cellular effects on Tau-expressing cancer cells. By spectrofluorometric approach, we found that two compounds, 2 and 9, demonstrated high affinity for Tau and exhibited a strong propensity to inhibit Tau fibrillation. Then, the biological activity of these compounds was evaluated on several Tau-expressing cells derived from glioblastoma. The two lead compounds displayed a high anti-metabolic activity on cells related to an increased fission of the mitochondria network. Moreover, we showed that both compounds induced microtubule bundling within newly formed neurite-like protrusions, as well as with defection of cell migration. Taken together, our results provide a strong experimental basis to develop new potent molecules targeting Tau-expressing cancer cells, such as GBM.


Asunto(s)
Glioblastoma , Proteínas tau , Humanos , Proteínas tau/metabolismo , Glioblastoma/metabolismo , Microtúbulos/metabolismo , Tiazoles/farmacología , Tubulina (Proteína)/metabolismo , Unión Proteica
10.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902094

RESUMEN

Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild-type (wt) and mutated Noxo1 (mut1) proteins were expressed in different cell lines to characterize their phenotype, functionality, and regulation. Mut1 increases ROS production through Nox1 activity affects mitochondrial organization and increases cytotoxicity in colorectal cancer cell lines. Unexpectedly the increased activity of Noxo1 is not related to a blockade of its proteasomal degradation since we were unable in our conditions to see any proteasomal degradation either for wt or mut1 Noxo1. Instead, D-box mutation mut1 leads to an increased translocation from the membrane soluble fraction to a cytoskeletal insoluble fraction compared to wt Noxo1. This mut1 localization is associated in cells with a filamentous phenotype of Noxo1, which is not observed with wt Noxo1. We found that mut1 Noxo1 associates with intermediate filaments such as keratin 18 and vimentin. In addition, Noxo1 D-Box mutation increases Nox1-dependent NADPH oxidase activity. Altogether, Nox1 D-box does not seem to be involved in Noxo1 degradation but rather related to the maintenance of the Noxo1 membrane/cytoskeleton balance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Especies Reactivas de Oxígeno , NADPH Oxidasa 1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Mutación
14.
Bioengineering (Basel) ; 10(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36829752

RESUMEN

Behavioral disorders, such as anxiety and depression, are prevalent globally and touch children and adults on a regular basis. Therefore, it is critical to comprehend how these disorders are affected. It has been demonstrated that neuropeptides can influence behavior, emotional reactions, and behavioral disorders. This review highlights the majority of the findings demonstrating neuropeptides' behavioral role and functional engineering in depression and anxiety. Gut-brain peptides, hypothalamic releasing hormone peptides, opioid peptides, and pituitary hormone peptides are the four major groups of neuropeptides discussed. Some neuropeptides appear to promote depression and anxiety-like symptoms, whereas others seem to reduce it, all depending on the receptors they are acting on and on the brain region they are localized in. The data supplied here are an excellent starting point for future therapy interventions aimed at treating anxiety and depression.

16.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497380

RESUMEN

Resistance to treatments is one of the leading causes of cancer therapy failure. Oxaliplatin is a standard chemotherapy used to treat metastatic colorectal cancer. However, its efficacy is greatly reduced by the development of resistances. In a previous study, we deciphered the mechanisms leading to oxaliplatin resistance and highlighted the roles played by ROS production and the p38 MAPK pathway in this phenomenon. In this report, we studied the effects of different chemotherapy molecules on our oxaliplatin-resistant cells to identify alternative treatments. Among all the studied molecules, gemcitabine was the only one to present a major cytotoxic effect on oxaliplatin-resistant cancer cells both in vivo and in vitro. However, the combination of oxaliplatin and gemcitabine did not present any major interest. Indeed, the study of combination efficiency using Chou and Talalay's method showed no synergy between oxaliplatin and gemcitabine. Using PamGene technology to decipher gemcitabine's effects on oxaliplatin-resistant cells, we were able to show that gemcitabine counteracts chemoresistance by strongly inhibiting the Akt and src/p38 MAPK pathways, leading to apoptosis induction and cell death. In view of these results, gemcitabine could be an interesting alternative therapy for patients with colorectal cancer not responding to oxaliplatin-based protocols such as FOLFOX.

17.
Molecules ; 27(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36500334

RESUMEN

Microtubule targeting agents (MTA) are anti-cancer molecules that bind tubulin and interfere with the microtubule functions, eventually leading to cell death. In the present study, we used an in vitro microtubule polymerization assay to screen several venom families for the presence of anti-microtubule activity. We isolated myotoxin-3, a peptide of the crotamine family, and three isoforms from the venom of the Northern Pacific rattlesnake Crotalus oreganus oreganus, which was able to increase tubulin polymerization. Myotoxin-3 turned out to be a cell-penetrating peptide that slightly diminished the viability of U87 glioblastoma and MCF7 breast carcinoma cells. Myotoxin 3 also induced remodeling of the U87 microtubule network and decreased MCF-7 microtubule dynamic instability. These effects are likely due to direct interaction with tubulin. Indeed, we showed that myotoxin-3 binds to tubulin heterodimer with a Kd of 5.3 µM and stoichiometry of two molecules of peptide per tubulin dimer. Our results demonstrate that exogenous peptides are good candidates for developing new MTA and highlight the richness of venoms as a source of pharmacologically active molecules.


Asunto(s)
Venenos de Crotálidos , Neurotoxinas , Animales , Humanos , Neurotoxinas/metabolismo , Tubulina (Proteína)/metabolismo , Crotalus/metabolismo , Venenos de Crotálidos/farmacología , Venenos de Crotálidos/metabolismo , Péptidos/farmacología , Péptidos/metabolismo
18.
Cancers (Basel) ; 14(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358803

RESUMEN

Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.

20.
Biomedicines ; 10(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892675

RESUMEN

Since its discovery in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread over the world, having a huge impact on people's lives and health. The respiratory system is often targeted in people with the coronavirus disease 2019 (COVID-19). The virus can also infect many organs and tissues in the body, including the reproductive system. The consequences of the SARS-CoV-2 infection on fertility and pregnancy in hosts are poorly documented. Available data on other coronaviruses, such as severe acute respiratory syndrome (SARS-CoV) and Middle Eastern Respiratory Syndrome (MERS-CoV) coronaviruses, identified pregnant women as a vulnerable group with increased pregnancy-related complications. COVID-19 was also shown to impact pregnancy, which can be seen in either the mother or the fetus. Pregnant women more likely require COVID-19 intensive care treatment than non-pregnant women, and they are susceptible to giving birth prematurely and having their newborns admitted to the neonatal intensive care unit. Angiotensin converting enzyme 2 (ACE2), a key player of the ubiquitous renin-angiotensin system (RAS), is the principal host cellular receptor for SARS-CoV-2 spike protein. ACE2 is involved in the regulation of both male and female reproductive systems, suggesting that SARS-CoV-2 infection and associated RAS dysfunction could affect reproduction. Herein, we review the current knowledge about COVID-19 consequences on male and female fertility, pregnant women, and their fetuses. Furthermore, we describe the effects of COVID-19 vaccination on reproduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA