Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38542440

Electrospray ionization mass spectrometry (ESI-MS) analysis is frequently associated with noncovalent adduct formation, both in positive and negative modes. Anion binding and sensing by mass spectrometry, notably more challenging compared to cation binding, will have major research potential with the development of appropriate sensors. Here, we demonstrated identification of stable bisquaternary dication adducts with trifluoroacetate (TFA-), Cl- and HSO4- in positive-mode ESI-MS analysis. The observed adducts were stable in MS/MS mode, leading to the formation of characteristic fragment ions containing a covalently bound anion, which requires bond reorganization. This phenomenon was confirmed by computational methods. Furthermore, given that anion detection and anion sensor chemistry have gained significant prominence in chemistry, we conducted an analysis of the fluorescent properties of bisquaternary ammonium compound as a potential anion sensor.


Ammonium Compounds , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry , Ions , Anions
2.
Metabolites ; 13(2)2023 Jan 20.
Article En | MEDLINE | ID: mdl-36837774

The metabolomics and proteomics analysis of saliva, an excellent biofluid that is a rich source of biological compounds, allows for the safe and frequent screening of drugs, their metabolites, and molecular biomarkers of various diseases. One of the most frequently used analytical methods in saliva analysis is liquid chromatography coupled with mass spectrometry (LC-MS) and tandem mass spectrometry. The low ionisation efficiency of some compounds and a complex matrix makes their identification by MS difficult. Furthermore, quantitative analysis by LC-MS frequently cannot be performed without isotopically labelled standards, which usually have to be specially synthesised. This review presented reports on qualitative and quantitative approaches in salivary metabolomics and proteomics. The purpose of this manuscript was to present the challenges, advances, and future prospects of mass spectrometry, both in the analysis of salivary metabolites and proteins. The presented review should appeal to those interested in the recent advances and trends in qualitative and quantitative mass spectrometry in salivary metabolomics and proteomics, which may facilitate a diagnostic accuracy, the evaluation of treatment efficacy, the early diagnosis of disease, and a forensic investigation of some unapproved drugs for any medical or dietary administration.

3.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article En | MEDLINE | ID: mdl-38203414

The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 and HSP90 in the prefrontal cortex (PFC), hippocampus (HIP) and thalamus (Thal). Male Wistar rats were exposed to CMS for 3 or 8 weeks. The antidepressant imipramine (IMI, 10 mg/kg, i.p., daily) was introduced in the last five weeks of the long-term CMS procedure. Depressive-like behavior was verified by the sucrose consumption test. The expression of mRNA and protein was quantified by real-time PCR and Western blot, respectively. In the 8-week CMS model, stress alone elevated HSP72 and HSP90B mRNA expression in the HIP. HSP72 mRNA was increased in the PFC and HIP of rats not responding to IMI treatment vs. IMI responders. The CMS exposure increased HSP72 protein expression in the cytosolic fraction of the PFC and HIP, and this effect was diminished by IMI treatment. Our results suggest that elevated levels of HSP72 may serve as an important indicator of neuronal stress reactions accompanying depression pathology and could be a potential target for antidepressant strategy.


Imipramine , Molecular Chaperones , Male , Rats , Animals , Imipramine/pharmacology , Rats, Wistar , HSP70 Heat-Shock Proteins , Hippocampus , HSP90 Heat-Shock Proteins/genetics , Prefrontal Cortex , RNA, Messenger/genetics , Antidepressive Agents/pharmacology
4.
Molecules ; 27(5)2022 Feb 28.
Article En | MEDLINE | ID: mdl-35268701

One effective solution in the analysis of complex mixtures, including protein or cell hydrolysates, is based on chemoselective derivatization of a selected group of compounds by using selective tags to facilitate detection. Another method is based on the capture of the desired compounds by properly designed solid supports, resulting in sample enrichment. Cysteine is one of the rarest amino acids, but at least one cysteine residue is present in more than 91% of human proteins, which clearly confirms its important role in biological systems. Some cysteine-containing peptides may serve as significant molecular biomarkers, which may emerge as key indices in the management of patients with particular diseases. In the current review, we describe recent advances in the development of cysteine-containing peptide modification techniques based on solution and solid phase derivatization and enrichment strategies.


Cysteine , Peptides , Cysteine/chemistry , Humans , Peptides/chemistry , Proteins/chemistry
5.
Article En | MEDLINE | ID: mdl-36613034

Background Migrants' access to healthcare services is limited. This study aimed to identify health system barriers to vaccination, specifically HPV/MMR vaccination among children in Ukrainian economic migrants (UMs). Methods Between December 2021-March 2022, a qualitative study of UMs living in Poland was conducted. Six focus groups were held with 53 UMs aged 15-45; in-depth interviews with 12 healthcare workers (HCWs) were also performed. A thematic analysis was conducted based on the six WHO health system building blocks. Results HCWs described gaps in integrating migrant status in accessible healthcare data which impeded active management of vaccination procedures. UMs reported that the digitization of healthcare services, intensified during the COVID-19 pandemic, reduced their access to primary care. Inadequate health information systems caused problems with the provision of credible vaccine information in translated forms, and language difficulties, experienced by both UMs and HCWs; this was enhanced by a lack of professional interpreting services. Although most UMs reported vaccinating children according to the Polish schedule, the variations in schedules across countries caused concern among UMs and increased HCWs' uncertainty about how to interpret vaccination cards, particularly in the context of possible false certificates. UMs were affected by discrimination through HCWs. HPV was deprioritized by UMs due to misconceptions about non-mandatory vaccinations; the cost was also a barrier. Conclusions The study findings have implications for migrant vaccination delivery targeting children in Poland, and other UMs receiving countries. A concerted effort is required to improve UM's awareness of the significance of vaccinations. Barriers to healthcare access must be recognized by policymakers. Importantly, removing the cost barrier may increase the uptake of the HPV vaccine among Ukrainian migrant adolescents.


COVID-19 , Papillomavirus Infections , Papillomavirus Vaccines , Transients and Migrants , Adolescent , Humans , Child , Poland , Papillomavirus Vaccines/therapeutic use , Pandemics , Vaccination/methods , Health Services Accessibility , Language , Health Personnel
6.
Molecules ; 26(19)2021 Sep 28.
Article En | MEDLINE | ID: mdl-34641412

Specific and nonspecific non-covalent molecular association of biomolecules is characteristic for electrospray-ionization mass spectrometry analysis of biomolecules. Understanding the interaction between two associated molecules is of significance not only from the biological point of view but also gas phase analysis by mass spectrometry. Here we reported a formation of non-covalent dimer of quaternary ammonium denatonium cation with +1 charge detected in the positive ion mode electrospray ionization mass spectrometry analysis of denatonium benzoate. Hydrogen deuterium exchange of amide and carbon-bonded hydrogens revealed that charge neutralization of one denatonium cation is the consequence of amide hydrogen dissociation. DFT (Density Functional Theory) calculations proved high thermodynamic stable of formed dimer stabilized by the short and strong N..H-N hydrogen bond. The signal intensity of the peak characterizing non-covalent dimer is low intensity and does not depend on the sample concentration. Additionally, dimer observation was found to be instrument-dependent. The current investigation is the first experimental and theoretical study on the quaternary ammonium ions dimer. Thus the present study has great significance for understanding the structures of the biomolecules as well as materials.

7.
Toxics ; 9(9)2021 Aug 30.
Article En | MEDLINE | ID: mdl-34564356

Exposure to air pollution from various airborne particulate matter (PM) is regarded as a potential health risk. Airborne PM penetrates the lungs, where it is taken up by macrophages, what results in macrophage activation and can potentially lead to negative consequences for the organism. In the present study, we assessed the effects of direct exposure of RAW 264.7 macrophages to crude PM (NIST1648a) and to a reduced content of organic matter (LAp120) for up to 72 h on selected parameters of metabolic activity. These included cell viability and apoptosis, metabolic activity and cell number, ROS synthesis, nitric oxide (NO) release, and oxidative burst. The results indicated that both NIST1648a and LAp120 negatively influenced the parameters of cell viability and metabolic activity due to increased ROS synthesis. The negative effect of PM was concentration-dependent; i.e., it was the most pronounced for the highest concentration applied. The impact of PM also depended on the time of exposure, so at respective time points, PM induced different effects. There were also differences in the impact of NIST1648a and LAp120 on almost all parameters tested. The negative effect of LAp120 was more pronounced, what appeared to be associated with an increased content of metals.

8.
Int J Mol Sci ; 22(9)2021 May 01.
Article En | MEDLINE | ID: mdl-34062902

Currently utilized antidepressants have limited effectiveness and frequently incur undesired effects. Most antidepressants are thought to act via the inhibition of monoamine reuptake; however, direct binding to monoaminergic receptors has been proposed to contribute to both their clinical effectiveness and their side effects, or lack thereof. Among the target receptors of antidepressants, α1­adrenergic receptors (ARs) have been implicated in depression etiology, antidepressant action, and side effects. However, differences in the direct effects of antidepressants on signaling from the three subtypes of α1-ARs, namely, α1A-, α1B- and α1D­ARs, have been little explored. We utilized cell lines overexpressing α1A-, α1B- or α1D-ARs to investigate the effects of the antidepressants imipramine (IMI), desipramine (DMI), mianserin (MIA), reboxetine (REB), citalopram (CIT) and fluoxetine (FLU) on noradrenaline-induced second messenger generation by those receptors. We found similar orders of inhibition at α1A-AR (IMI < DMI < CIT < MIA < REB) and α1D­AR (IMI = DMI < CIT < MIA), while the α1B-AR subtype was the least engaged subtype and was inhibited with low potency by three drugs (MIA < IMI = DMI). In contrast to their direct antagonistic effects, prolonged incubation with IMI and DMI increased the maximal response of the α1B-AR subtype, and the CIT of both the α1A- and the α1B-ARs. Our data demonstrate a complex, subtype-specific modulation of α1-ARs by antidepressants of different groups.


Antidepressive Agents/pharmacology , Depression/drug therapy , Receptors, Adrenergic, alpha-1/genetics , Animals , Antidepressive Agents/classification , Citalopram/pharmacology , Depression/etiology , Depression/genetics , Depression/pathology , Desipramine/pharmacology , Fluoxetine/pharmacology , Gene Expression Regulation/drug effects , Humans , Imipramine/pharmacology , Mianserin/pharmacology , Mice , PC12 Cells , Rats , Reboxetine/pharmacology , Signal Transduction/drug effects
9.
Int J Mol Sci ; 22(5)2021 Mar 07.
Article En | MEDLINE | ID: mdl-33799975

Migraine is a common neurological disease that affects about 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura. According to the neurovascular theory of migraine, the activation of the trigeminovascular system (TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP) are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression (CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from aberrant interactions between neurons and glia have been studied in models of familial hemiplegic migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.


Calcium Channels/metabolism , Migraine Disorders/etiology , Neuroglia/pathology , Calcitonin Gene-Related Peptide/metabolism , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels, N-Type/chemistry , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Humans , Migraine Disorders/drug therapy , Migraine Disorders/physiopathology , Mutation , Neuroglia/metabolism
10.
Neural Regen Res ; 16(7): 1383-1391, 2021 Jul.
Article En | MEDLINE | ID: mdl-33318422

Parkinson's disease (PD) is the second most common cause of neurodegeneration. Over the last two decades, various hypotheses have been proposed to explain the etiology of PD. Among these is the oxidant-antioxidant theory, which asserts that local and systemic oxidative damage triggered by reactive oxygen species and other free radicals may promote dopaminergic neuron degeneration. Excessive reactive oxygen species formation, one of the underlying causes of pathology in the course of PD has been evidenced by various studies showing that oxidized macromolecules including lipids, proteins, and nucleic acids accumulate in brain tissues of PD patients. DNA oxidation may produce various lesions in the course of PD. Mutations incurred as a result of DNA oxidation may further enhance reactive oxygen species production in the brains of PD patients, exacerbating neuronal loss due to defects in the mitochondrial electron transport chain, antioxidant depletion, and exposure to toxic oxidized dopamine. The protein products of SNCA, PRKN, PINK1, DJ1, and LRRK2 genes are associated with disrupted oxidoreductive homeostasis in PD. SNCA is the first gene linked with familial PD and is currently known to be affected by six mutations correlated with the disorder: A53T, A30P, E46K, G51D, H50Q and A53E. PRKN encodes Parkin, an E3 ubiquitin ligase which mediates the proteasome degradation of redundant and disordered proteins such as glycosylated α-synuclein. Over 100 mutations have been found among the 12 exons of PRKN. PINK1, a mitochondrial kinase highly expressed in the brain, may undergo loss of function mutations which constitute approximately 1-8% of early onset PD cases. More than 50 PD-promoting mutations have been found in PINK1. Mutations in DJ-1, a neuroprotective protein, are a rare cause of early onset PD and constitute only 1% of cases. Around 20 mutations have been found in DJ1 among PD patients thus far. Mutations in the LRRK2 gene are the most common known cause of familial autosomal dominant PD and sporadic PD. Treatment of PD patients, especially in the advanced stages of the disease, is very difficult. The first step in managing progressive PD is to optimize dopaminergic therapy by increasing the doses of dopamine agonists and L-dopa. The next step is the introduction of advanced therapies, such as deep brain stimulation. Genetic factors may influence the response to L-dopa and deep brain stimulation therapy and the regulation of oxidative stress. Consequently, research into minimally invasive surgical interventions, as well as therapies that target the underlying etiology of PD is warranted.

11.
Curr Genomics ; 21(3): 224-236, 2020 Apr.
Article En | MEDLINE | ID: mdl-33071616

BACKGROUND: Migraine is a polygenetic disease, considered as a channelopathy. The dysregulation of ion functioning due to genetic changes may activate the trigeminovascular system and induce migraine attack both migraine with aura (MA) and without aura (MO). OBJECTIVES: The aim of the study was to analyze the following variants of genes encoding ion channels and associated protein: c.3199G>A SCN1A, c.56G>A SCN2A, c.28A>G and c.328T>C KCNK18, c.3053A>G TRPA1, c.31-1811C>T STX1A in migraine patients. PATIENTS AND METHODS: The study included 170 migraine patients and 173 controls. HRMA and Sanger sequencing were used for genotyping. Meta-analysis was performed for c.28A>G, c.328T>C KCNK18, and c.31-1811C>T STX1A. RESULTS: AA genotype of c.56G>A SCN2A was found only in migraine patients. Patients with c.328T>C KCNK18 mutation had an increased risk of developing migraine before the age of 18. Moreover, individuals with AA/TC haplotype of KCNK18 had higher attack frequency than those with AA/TT (p<0.05). T allele of c.31-1811C>T STX1A was more frequent in MA patients than MO (p<0.05). The c.3053A>G TRPA1 polymorphism was more common in patients with migraine onset before the age of 15 (p<0.05), while c.31-1811C>T STX1A and c.3199G>A SCN1A before the age of 10 (p<0.01). Meta-analysis showed a significant association of c.31-1811C>T STX1A polymorphism with migraine overall (OR=1.22, p=0.0086), MA, and MO. No association was found for c.28A>G KCNK18, c.328T>C KCNK18, and migraine overall. CONCLUSION: Changes in genes encoding ion channels or proteins regulating their functioning may increase the risk of migraines and correlate with clinical features of disease, e.g. age of onset and attack frequency.

12.
J Integr Neurosci ; 19(2): 359-371, 2020 Jun 30.
Article En | MEDLINE | ID: mdl-32706201

Alzheimer's disease is the most common neurodegenerative disease and the cause of dementia. Although the pathomechanisms underlying Alzheimer's disease have not been fully elucidated, there is evidence that genetic and environmental factors contribute to its development. Immune system changes, both environmentally-induced and, as a result of predisposing genetics, are implicated in Alzheimer's disease etiopathogenesis. Genes associated with immune system dysfunction in Alzheimer's disease include CLU, BIN1, CR1, ABCA7, HLA-DRB1, TREM2, EPHA1, and CD2AP. In particular, BIN1 and CLU, aberrations in which are thought to promote neurodegeneration by dysregulating exocytosis and immune processes, together with the E4 variant of the APOE gene, are among the most common genetic risk factors for Alzheimer's disease. While the relationships between these genes in Alzheimer's disease have been examined, little information exists regarding their role as variables predisposing first or second-degree relatives of Alzheimer's disease patients to the illness. The rationale of this review is to suggest that individuals with a family history of Alzheimer's disease who have the BIN1-T/T variant may be at significant risk of developing Alzheimer's disease. Also, the unfavorable BIN1-T variant is independent of APOE E4-associated risk. People at risk of developing Alzheimer's disease are more often carriers of the protective C-variant of the CLU gene, the presence of which might be associated with later-onset dementia observable within this high-risk group. It seems BIN1 and CLU together with, albeit independent of APOE E4, may be among the factors predisposing individuals with a family history of Alzheimer's disease to developing the illness.


Alzheimer Disease/genetics , Alzheimer Disease/immunology , Genetic Predisposition to Disease/genetics , Humans
13.
Curr Alzheimer Res ; 17(3): 238-258, 2020.
Article En | MEDLINE | ID: mdl-32321403

Dementia is an important issue in western societies, and in the following years, this problem will also rise in the developing regions, such as Africa and Asia. The most common types of dementia in adults are Alzheimer's Disease (AD), Dementia with Lewy Bodies (DLB), Frontotemporal Dementia (FTD) and Vascular Dementia (VaD), of which, AD accounts for more than half of the cases. The most prominent symptom of AD is cognitive impairment, currently treated with four drugs: Donepezil, rivastigmine, and galantamine, enhancing cholinergic transmission; as well as memantine, protecting neurons against glutamate excitotoxicity. Despite ongoing efforts, no new drugs in the treatment of AD have been registered for the last ten years, thus multiple studies have been conducted on genetic factors affecting the efficacy of antidementia pharmacotherapy. The researchers investigate the effects of variants in multiple genes, such as ABCB1, ACE, CHAT, CHRNA7, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP3A7, NR1I2, NR1I3, POR, PPAR, RXR, SLC22A1/2/5, SLC47A1, UGT1A6, UGT1A9 and UGT2B7, associated with numerous pathways: the development of pathological proteins, formation and metabolism of acetylcholine, transport, metabolism and excretion of antidementia drugs and transcription factors regulating the expression of genes responsible for metabolism and transport of drugs. The most promising results have been demonstrated for APOE E4, dementia risk variant, BCHE-K, reduced butyrylcholinesterase activity variant, and CYP2D6 UM, ultrarapid hepatic metabolism. Further studies investigate the possibilities of the development of emerging drugs or genetic editing by CRISPR/Cas9 for causative treatment. In conclusion, the pharmacogenetic studies on dementia diseases may improve the efficacy of pharmacotherapy in some patients with beneficial genetic variants, at the same time, identifying the carriers of unfavorable alleles, the potential group of novel approaches to the treatment and prevention of dementia.


Gene Editing/methods , Gene Editing/trends , Neurocognitive Disorders/therapy , Pharmacogenetics/methods , Pharmacogenetics/trends , Constitutive Androstane Receptor , Humans , Neurocognitive Disorders/genetics
14.
Folia Neuropathol ; 58(1): 83-92, 2020.
Article En | MEDLINE | ID: mdl-32337960

INTRODUCTION: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary, progressive ischemic disease of small vessels of the brain characterized by migraine with aura (MA), recurrent subcortical ischemic episodes, cognitive decline and psychiatric disorders. CADASIL is caused by mutations in the NOTCH3 gene. We identified the NOTCH3 Y189C mutation as a genetic cause of CADASIL in a Polish family and provided its first clinical manifestation. MATERIAL AND METHODS: The study included twelve subjects from one family. The NOTCH3 mutation, APOE and MTHFR polymorphisms were determined by high-resolution melting analyses (HRMA) and Sanger sequencing. Neuroimaging included CT and MRI. Ultrastructural examination of skin-muscle biopsy material of the proband was performed. RESULTS: The NOTCH3 Y189C mutation was present in a 36-year-old woman and her two sisters (aged 40 and 27) from 6 siblings. The MA was found in all of them, and started or became more severe after childbirth. The numerous T2/FLAIR hyperintense lesions were shown in the brain MRI. The deposition of granular osmiophilic material in the wall of small vessels of the proband observed in histopathological analysis confirmed the high degree of CADASIL severity. CONCLUSIONS: Patients with the Y189C mutation of NOTCH3 from the same family display a similar phenotype of CADASIL.


CADASIL/genetics , Receptor, Notch3/genetics , Adult , Female , Humans , Mutation , Pedigree , Poland
15.
DNA Cell Biol ; 39(8): 1410-1420, 2020 Aug.
Article En | MEDLINE | ID: mdl-32315547

Mitochondria play an important role in numerous processes, including energy generation, regulating ion homeostasis, and cell signaling. Mitochondria are also the main source of reactive oxygen species (ROS). Due to the oxidative environment within mitochondria, the macromolecules therein, for example, mtDNA, proteins, and lipids are more susceptible to sustaining damage. During aging, mitochondrial functions decline, partly as a result of an accumulation of mtDNA mutations, decreased mtDNA copy number and protein expression, and a reduction in oxidative capacity. The aim of this study was to summarize the knowledge on DNA oxidative damage in aging and age-related neurodegenerative diseases. It has been hypothesized that various ROS may play an important role not only in physiological senescence but also in the development of neurodegenerative diseases, for example, Alzheimer's disease and Parkinson's disease. Thus, mitochondria seem to be a potential target of novel treatments for neurodegenerative diseases.


Aging/genetics , Cell Nucleus/genetics , Mitochondria/genetics , Oxidative Stress/genetics , Cell Nucleus/pathology , DNA Damage/genetics , DNA, Mitochondrial/genetics , Humans , Mitochondria/pathology , Reactive Oxygen Species/metabolism
16.
Curr Alzheimer Res ; 17(3): 208-223, 2020.
Article En | MEDLINE | ID: mdl-32091332

In an aging society, the number of people suffering from Alzheimer's Disease (AD) is still growing. Currently, intensive research is being carried out on the pathogenesis of AD. The results of these studies indicated that oxidative stress plays an important role in the onset and development of this disease. Moreover, in AD oxidative stress is generated by both genetic and biochemical factors as well as the functioning of the systems responsible for their formation and removal. The genetic factors associated with the regulation of the redox system include TOMM40, APOE, LPR, MAPT, APP, PSEN1 and PSEN2 genes. The most important biochemical parameters related to the formation of oxidative species in AD are p53, Homocysteine (Hcy) and a number of others. The formation of Reactive Oxygen Species (ROS) is also related to the efficiency of the DNA repair system, the effectiveness of the apoptosis, autophagy and mitophagy processes as well as the antioxidant potential. However, these factors are responsible for the development of many disorders, often with similar clinical symptoms, especially in the early stages of the disease. The discovery of markers of the early diagnosis of AD may contribute to the introduction of pharmacotherapy and slow down the progression of this disease.


Alzheimer Disease/genetics , Alzheimer Disease/pathology , Oxidative Stress/genetics , Biomarkers , Early Diagnosis , Genetic Variation , Humans
17.
Biomed Res Int ; 2019: 8197580, 2019.
Article En | MEDLINE | ID: mdl-31531369

PURPOSE: Vitamin D, besides its role in calcium-phosphorus metabolism, turned out to play a significant immunomodulating function. Until now four single nucleotide polymorphisms of vitamin D receptor gene (VDR), rs2228570 (FokI), rs1544410 (BsmI), rs7975232 (ApaI), and rs731236 (TaqI), have been studied in autoimmune thyroid disorders, with conflicting results. Another functional polymorphism of the VDR gene, rs11568820 (Cdx2), has been shown to influence the immune system, although it has not been studied for its association with autoimmune thyroiditis to date. Therefore, the study aimed to evaluate the association of these five VDR gene polymorphisms with susceptibility to autoimmune thyroiditis among Caucasian Polish population. A relationship between the studied polymorphisms and selected clinical features of the disease was additionally assessed. METHODS: 223 patients with autoimmune thyroiditis and 130 control subjects were enrolled in the study. VDR polymorphisms were studied by PCR-RFLP or TaqMan real-time PCR. RESULTS: Allele and genotype distributions of any of the studied polymorphisms did not differ significantly between patients and controls. Similarly, frequencies of haplotypes derived from rs1544410-rs7975232-rs731236 (BsmI-ApaI-TaqI) polymorphisms were not significantly different in the two studied groups. However, a weak association between rs1544410 (BsmI) or rs7975232 (ApaI) VDR polymorphisms and thyroid volume was found (p = 0.03 and p = 0.04, resp.). CONCLUSIONS: Our results suggest that VDR gene is not a major susceptibility factor for autoimmune thyroiditis development, at least in Caucasian Polish population.


Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Calcitriol/genetics , Thyroiditis, Autoimmune/genetics , Adult , Alleles , Case-Control Studies , Female , Gene Frequency/genetics , Genetic Association Studies/methods , Haplotypes/genetics , Humans , Male , Middle Aged , Risk Factors , White People/genetics
18.
Folia Neuropathol ; 57(2): 106-116, 2019.
Article En | MEDLINE | ID: mdl-31556571

Alzheimer's disease (AD) is a progressive neurodegenerative dementia in adults. Pathogenesis of AD depends on various factors, including APOE genetic variants, apolipoprotein E (apoE) phenotype and oxidative stress, which may promote both DNA and RNA damage, including non-coding RNA (ncRNA). Among ncRNAs, microRNA (miRNA) is known to contribute to pathologic processes in AD. The aim of the study was to analyse the plasma concentration of apoE by ELISA as well as the plasma levels of miR-107 and miR-650 by qPCR in relation to APOE genetic variants and clinical features including the age of onset and dementia severity in 64 AD patients and 132 controls. Our data showed that a low apoE plasma concentration was a risk factor for developing AD (OR = 5.18, p = 6.58E-06) and was particularly pronounced in severe dementia (p < 0.001) and correlated with cognitive functions (R = 0.295, p = 0.020), similarly as the level of miR-650 (R = 0.385, p = 0.033). The presence of APOE E4 allele in both AD patients and controls led to a reduction in apoE, while APOE E3/E3 genotype was associated with an increased apoE concentration and level of miR-107 in AD (p < 0.05) which was inversely correlated with the number of APOE E4 alleles (R = -0.448, p = 0.009). Additionally, patients with the onset at 60-69 years of age showed a reduced level of miR-107 (p < 0.05, as compared to AD above 80 years of age). Changed levels of plasma apoE, miR-107 and miR-650 may be a marker of the neurodegenerative process in the course of AD, associated with amyloid ß metabolism and inordinate cell cycle.


Alzheimer Disease/genetics , Apolipoproteins E/genetics , MicroRNAs/blood , Age of Onset , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Apolipoproteins E/blood , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Severity of Illness Index
19.
Mult Scler Relat Disord ; 32: 66-69, 2019 Jul.
Article En | MEDLINE | ID: mdl-31048186

BACKGROUND: Multiple sclerosis (MS) is a common inflammatory demyelinating disease of the central nervous system. The clinical phenotype is probably modified by interactions from genetic and environmental factors. Neurofibromatosis type 1 (NF1) is an autosomal dominant neurocutaneous disease. NF1 gene mutations lead to clinical manifestation in the peripheral and central nervous system. Coexistence of MS and NF1 is a rare condition. OBJECTIVE: To report the case of the patient with primary progressive MS (PPMS) and NF1. METHODS: A retrospective analysis of a patient who has undergone whole exome sequencing confirmed by Sanger sequencing. RESULTS: We reported a novel de novo c.6817delC deletion and rs1801052 polymorphism in NF1 gene associated with NF1 symptoms, as well as numerous polymorphisms in SPG7, SPG15, SPG39 genes responsible for benign spastic paraplegia. CONCLUSION: Co-occurrence of PPMS and NF1 may be a consequence of genetic changes.


Multiple Sclerosis, Chronic Progressive/complications , Multiple Sclerosis, Chronic Progressive/diagnosis , Neurofibromatosis 1/complications , Neurofibromatosis 1/diagnosis , Adult , Amino Acid Sequence , Female , Humans , Multiple Sclerosis, Chronic Progressive/genetics , Neurofibromatosis 1/genetics
20.
Oncotarget ; 9(81): 35207-35225, 2018 Oct 16.
Article En | MEDLINE | ID: mdl-30443289

Alzheimer's disease (AD) is a progressive disease, with frequently observed improper biothiols turnover, homocysteine (Hcy) and glutathione (GSH). GSH protects cells from oxidative stress and may be determined by 8-oxo-2'-deoxyguanosine (8-oxo2dG) level and its repair enzyme 8-oxoguanine DNA glycosylase (OGG1). The presence of unfavorable alleles, e.g., in APOE cluster, TOMM40 or APOC1 is known to facilitate the dementia onset under oxidative stress. The aim of the study was to analyze rs1052452, rs2075650 TOMM40 polymorphisms, rs4420638 APOC1, and their correlation with Hcy, GSH, 8-oxo2dG, OGG1 levels in plasma of AD patients and controls. We recruited 230 individuals: 88 AD, 80 controls without (UC), 62 controls with (RC) positive family history of AD. The TOMM40 genotype was determined by HRM and capillary electrophoresis, while APOC1 by HRM. The concentrations of OGG1, 8-oxo2dG were determined by ELISA, whereas Hcy, GSH by HPLC/EC. We showed that over 60% of AD patients had increased Hcy levels (p<0.01 vs. UC, p<0.001 vs. RC), while GSH (p<0.01 vs. UC), 8-oxo2dG (p<0.01 vs. UC, p<0.001 vs. RC) were reduced. Minor variants: rs10524523-L, rs4420638-G, rs2075650-G were significantly overrepresented in AD. For rs4420638-G, rs2075650-G variants, the association remained significant in APOE E4 non-carriers. The misbalance of analyzed biothiols, and 8-oxo2dG, OGG1 were more pronounced in carriers of major variants: rs10524523-S/VL, rs4420638-A, rs2075650-A. We showed, for the first time, that APOC1 and TOMM40 rs2075650 polymorphisms may be independent risk factors of developing AD, whose major variants are accompanied by disruption of biothiols metabolism and inefficient removal of DNA oxidation.

...