Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Biosensors (Basel) ; 13(7)2023 Jun 26.
Article En | MEDLINE | ID: mdl-37504079

In this work, we obtained three new phosphorescent iridium complexes (Ir1-Ir3) of general stoichiometry [Ir(N^C)2(N^N)]Cl decorated with oligo(ethylene glycol) fragments to make them water-soluble and biocompatible, as well as to protect them from aggregation with biomolecules such as albumin. The major photophysical characteristics of these phosphorescent complexes are determined by the nature of two cyclometallating ligands (N^C) based on 2-pyridine-benzothiophene, since quantum chemical calculations revealed that the electronic transitions responsible for the excitation and emission are localized mainly at these fragments. However, the use of various diimine ligands (N^N) proved to affect the quantum yield of phosphorescence and allowed for changing the complexes' sensitivity to oxygen, due to the variations in the steric accessibility of the chromophore center for O2 molecules. It was also found that the N^N ligands made it possible to tune the biocompatibility of the resulting compounds. The wavelengths of the Ir1-Ir3 emission maxima fell in the range of 630-650 nm, the quantum yields reached 17% (Ir1) in a deaerated solution, and sensitivity to molecular oxygen, estimated as the ratio of emission lifetime in deaerated and aerated water solutions, displayed the highest value, 8.2, for Ir1. The obtained complexes featured low toxicity, good water solubility and the absence of a significant effect of biological environment components on the parameters of their emission. Of the studied compounds, Ir1 and Ir2 were chosen for in vitro and in vivo biological experiments to estimate oxygen concentration in cell lines and tumors. These sensors have demonstrated their effectiveness for mapping the distribution of oxygen and for monitoring hypoxia in the biological objects studied.


Neoplasms , Oxygen , Humans , Ligands , Hypoxia , Water
2.
Dalton Trans ; 52(14): 4595-4605, 2023 Apr 04.
Article En | MEDLINE | ID: mdl-36928166

A novel series of cyclometalated platinum(II) complexes bearing acyclic diaminocarbene (ADC) ancillary ligands were designed and prepared. Their photophysical properties were systematically studied through experimental and theoretical investigations. All complexes exhibit green phosphorescence with a quantum efficiency of up to 45% in 2 wt% doped PMMA film at room temperature. The complexes are used as light-emitting dopants for organic light-emitting diode (OLED) fabrication. The devices displayed a green emission with a maximum current efficiency of 2.9 cd A-1 and a luminance of 2700 cd m-2. These results show that these cyclometalated platinum(II) complexes can be used as efficient green emitting components of OLED devices.

3.
Molecules ; 28(6)2023 Mar 17.
Article En | MEDLINE | ID: mdl-36985710

A series of bis-metalated phosphorescent [(N^C)2Ir(bipyridine)]+ complexes with systematic variations in the structure and electronic characteristics of the N^C ligands were synthesized and characterized by using elemental analysis, mass spectrometry, NMR spectroscopy and X-ray crystallography. Investigation of the complexes' spectroscopic properties together with DFT and TD DFT calculations revealed that metal-to-ligand charge transfer (MLCT) and intraligand (LC) transition play key roles in the generation of emissive triplet states. According to the results of theoretical studies, the 3LC excited state is more accurate to consider as an intraligand charge transfer process (ILCT) between N- and C-coordinated moieties of the N^C chelate. This hypothesis is completely in line with the trends observed in the experimental absorption and emission spectra, which display systematic bathochromic shifts upon insertion of electron-withdrawing substituents into the N-coordinated fragment. An analogous shift is induced by expansion of the aromatic system of the C-coordinated fragment and insertion of polarizable sulfur atoms into the aromatic rings. These experimental and theoretical findings extend the knowledge of the nature of photophysical processes in complexes of this type and provide useful instruments for fine-tuning of their emissive characteristics.

4.
Chemistry ; 28(64): e202203341, 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36347631

Invited for the cover of this issue are the groups of Sergey P. Tunik and his colleagues from St Petersburg University. The image depicts the strong bathochromic shift of the emission wavelength of phosphorescent platinum(II) complexes upon their aggregation in the presence of water. Read the full text of the article at 10.1002/chem.202202207.

5.
Chemistry ; 28(64): e202202207, 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36307898

Five square-planar [Pt(C^N*N'^C')] complexes (Pt1-Pt5) with novel nonsymmetric tetradentate ligands (L1-L5) were synthesized and characterized. Varying the structure of the metalating aromatic systems result in substantial changes in photophysical properties and intermolecular interaction mode of the complexes in solution and in solid state. The complexes are strongly emissive in tetrahydrofuran solution, with the band maxima ranging from 560 to 690 nm. Three of these complexes (Pt1, Pt2, Pt4) afford nanospecies upon injection of their solution into water, which show aggregation-induced emission (AIE) with a strong red shift of emission bands. In the solid state, crystalline samples of these complexes demonstrate mechanochromism upon grinding with a bathochromic shift of the emission. DFT and TD-DFT computational analysis of monomeric Pt1-Pt5 in solution and model dimeric emitters formed through intermolecular interaction of Pt1, Pt2, Pt4 molecules allowed assignment of observed AIE to the 3 MMLCT excited states of Pt-Pt bonded aggregates of these complexes.

6.
Molecules ; 27(10)2022 May 14.
Article En | MEDLINE | ID: mdl-35630633

A series of [Ir(N^C)2(N^N)]+ NIR-emitting orthometalated complexes (1-7) has been prepared and structurally characterized using elemental analysis, mass-spectrometry, and NMR spectroscopy. The complexes display intense phosphorescence with vibrationally structured emission bands exhibiting the maxima in the range 713-722 nm. The DFT and TD DFT calculations showed that the photophysical characteristics of these complexes are largely determined by the properties of the metalating N^C ligands, with their major contribution into formation of the lowest S1 and T1 excited states responsible for low energy absorption and emission, respectively. Emission lifetimes of 1-7 in degassed methanol solution vary from 1.76 to 5.39 µs and show strong quenching with molecular oxygen to provide an order of magnitude lifetime reduction in aerated solution. The photophysics of two complexes (1 and 7) were studied in model physiological media containing fetal bovine serum (FBS) and Dulbecco's Modified Eagle Medium (DMEM) to give linear Stern-Volmer calibrations with substantially lower oxygen-quenching constants compared to those obtained in methanol solution. These observations were interpreted in terms of the sensors' interaction with albumin, which is an abundant component of FBS and cell media. The studied complexes displayed acceptable cytotoxicity and preferential localization, either in mitochondria (1) or in lysosomes (7) of the CHO-K1 cell line. The results of the phosphorescence lifetime imaging (PLIM) experiments demonstrated considerable variations of the sensors' lifetimes under normoxia and hypoxia conditions and indicated their applicability for semi-quantitative measurements of oxygen concentration in living cells. The complexes' emission in the NIR domain and the excitation spectrum, extending down to ca. 600 nm, also showed that they are promising for use in in vivo studies.


Methanol , Radiation , Ligands , Magnetic Resonance Spectroscopy , Oxygen
7.
Molecules ; 26(10)2021 May 13.
Article En | MEDLINE | ID: mdl-34068190

Synthesis of biocompatible near infrared phosphorescent complexes and their application in bioimaging as triplet oxygen sensors in live systems are still challenging areas of organometallic chemistry. We have designed and synthetized four novel iridium [Ir(N^C)2(N^N)]+ complexes (N^C-benzothienyl-phenanthridine based cyclometalated ligand; N^N-pyridin-phenanthroimidazol diimine chelate), decorated with oligo(ethylene glycol) groups to impart these emitters' solubility in aqueous media, biocompatibility, and to shield them from interaction with bio-environment. These substances were fully characterized using NMR spectroscopy and ESI mass-spectrometry. The complexes exhibited excitation close to the biological "window of transparency", NIR emission at 730 nm, and quantum yields up to 12% in water. The compounds with higher degree of the chromophore shielding possess low toxicity, bleaching stability, absence of sensitivity to variations of pH, serum, and complex concentrations. The properties of these probes as oxygen sensors for biological systems have been studied by using phosphorescence lifetime imaging experiments in different cell cultures. The results showed essential lifetime response onto variations in oxygen concentration (2.0-2.3 µs under normoxia and 2.8-3.0 µs under hypoxia conditions) in complete agreement with the calibration curves obtained "in cuvette". The data obtained indicate that these emitters can be used as semi-quantitative oxygen sensors in biological systems.


Biocompatible Materials/chemistry , Iridium/chemistry , Luminescence , Oxygen/analysis , Animals , CHO Cells , Cricetulus , HeLa Cells , Humans , Molecular Conformation , Proton Magnetic Resonance Spectroscopy , Subcellular Fractions/metabolism
8.
Molecules ; 27(1)2021 Dec 30.
Article En | MEDLINE | ID: mdl-35011464

Herein we report four [Ir(N^C)2(L^L)]n+, n = 0,1 complexes (1-4) containing cyclometallated N^C ligand (N^CH = 1-phenyl-2-(4-(pyridin-2-yl)phenyl)-1H-phenanthro[9,10-d]imidazole) and various bidentate L^L ligands (picolinic acid (1), 2,2'-bipyridine (2), [2,2'-bipyridine]-4,4'-dicarboxylic acid (3), and sodium 4,4',4″,4‴-(1,2-phenylenebis(phosphanetriyl))tetrabenzenesulfonate (4). The N^CH ligand precursor and iridium complexes 1-4 were synthesized in good yield and characterized using chemical analysis, ESI mass spectrometry, and NMR spectroscopy. The solid-state structure of 2 was also determined by XRD analysis. The complexes display moderate to strong phosphorescence in the 550-670 nm range with the quantum yields up to 30% and lifetimes of the excited state up to 60 µs in deoxygenated solution. Emission properties of 1-4 and N^CH are strongly pH-dependent to give considerable variations in excitation and emission profiles accompanied by changes in emission efficiency and dynamics of the excited state. Density functional theory (DFT) and time-dependent density functional theory (TD DFT) calculations made it possible to assign the nature of emissive excited states in both deprotonated and protonated forms of these molecules. The complexes 3 and 4 internalize into living CHO-K1 cells, localize in cytoplasmic vesicles, primarily in lysosomes and acidified endosomes, and demonstrate relatively low toxicity, showing more than 80% cells viability up to the concentration of 10 µM after 24 h incubation. Phosphorescence lifetime imaging microscopy (PLIM) experiments in these cells display lifetime distribution, the conversion of which into pH values using calibration curves gives the magnitudes of this parameter compatible with the physiologically relevant interval of the cell compartments pH.


Hydrogen-Ion Concentration , Iridium/chemistry , Organometallic Compounds/chemistry , Animals , Cell Line , Chemical Phenomena , Chemistry Techniques, Synthetic , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Molecular Imaging , Molecular Structure , Organometallic Compounds/chemical synthesis , X-Ray Diffraction
...