Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38918266

RESUMEN

Pulmonary artery stenosis (PAS) often presents in children with congenital heart disease, altering blood flow and pressure during critical periods of growth and development. Variability in stenosis onset, duration, and severity result in variable growth and remodeling of the pulmonary vasculature. Computational fluid dynamics (CFD) models enable investigation into the hemodynamic impact and altered mechanics associated with PAS. In this study, a one-dimensional (1D) fluid dynamics model was used to simulate hemodynamics throughout the pulmonary arteries of individual animals. The geometry of the large pulmonary arteries was prescribed by animal-specific imaging, whereas the distal vasculature was simulated by a three-element Windkessel model at each terminal vessel outlet. Remodeling of the pulmonary vasculature, which cannot be measured in vivo, was estimated via model-fitted parameters. The large artery stiffness was significantly higher on the left side of the vasculature in the left pulmonary artery (LPA) stenosis group, but neither side differed from the sham group. The sham group exhibited a balanced distribution of total distal vascular resistance, whereas the left side was generally larger in the LPA stenosis group, with no significant differences between groups. In contrast, the peripheral compliance on the right side of the LPA stenosis group was significantly greater than the corresponding side of the sham group. Further analysis indicated the underperfused distal vasculature likely moderately decreased in radius with little change in stiffness given the increase in thickness observed with histology. Ultimately, our model enables greater understanding of pulmonary arterial adaptation due to LPA stenosis and has potential for use as a tool to noninvasively estimate remodeling of the pulmonary vasculature.

2.
Function (Oxf) ; 3(4): zqac022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774590

RESUMEN

Deep phenotyping of pulmonary hypertension (PH) with multimodal diagnostic exercise interventions can lead to early focused therapeutic interventions. Herein, we report methods to simultaneously assess pulmonary impedance, differential biventricular myocardial strain, and right ventricular:pulmonary arterial (RV:PA) uncoupling during exercise, which we pilot in subjects with suspected PH. As proof-of-concept, we show that four subjects with different diagnoses [pulmonary arterial hypertension (PAH); chronic thromboembolic disease (CTEPH); PH due to heart failure with preserved ejection fraction (PH-HFpEF); and noncardiac dyspnea (NCD)] have distinct patterns of response to exercise. RV:PA coupling assessment with exercise was highest-to-lowest in this order: PAH > CTEPH > PH-HFpEF > NCD. Input impedance (Z0) with exercise was highest in precapillary PH (PAH, CTEPH), followed by PH-HFpEF and NCD. Characteristic impedance (ZC) tended to decline with exercise, except for the PH-HFpEF subject (initial Zc increase at moderate workload with subsequent decrease at higher workload with augmentation in cardiac output). Differential myocardial strain was normal in PAH, CTEPH, and NCD subjects and lower in the PH-HFpEF subject in the interventricular septum. The combination of these metrics allowed novel insights into mechanisms of RV:PA uncoupling. For example, while the PH-HFpEF subject had hemodynamics comparable to the NCD subject at rest, with exercise coupling dropped precipitously, which can be attributed (by decreased myocardial strain of interventricular septum) to poor support from the left ventricle (LV). We conclude that this deep phenotyping approach may distinguish afterload sensitive vs. LV-dependent mechanisms of RV:PA uncoupling in PH, which may lead to novel therapeutically relevant insights.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Enfermedades no Transmisibles , Hipertensión Arterial Pulmonar , Humanos , Arteria Pulmonar , Insuficiencia Cardíaca/diagnóstico , Ventrículos Cardíacos , Volumen Sistólico , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar Primaria Familiar
3.
Pulm Circ ; 12(1): e12029, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35506089

RESUMEN

Pulmonary vascular distensibility (α) is a marker of the ability of the pulmonary vasculature to dilate in response to increases in cardiac output, which protects the right ventricle from excessive increases in afterload. α measured with exercise predicts clinical outcomes in pulmonary hypertension (PH) and heart failure. In this study, we aim to determine if α measured with a passive leg raise (PLR) maneuver is comparable to α with exercise. Invasive cardiopulmonary exercise testing (iCPET) was performed with hemodynamics recorded at three stages: rest, PLR and peak exercise. Four hemodynamic phenotypes were identified (2019 ECS guidelines): pulmonary arterial hypertension (PAH) (n = 10), isolated post-capillary (Ipc-PH) (n = 18), combined pre-/post-capillary PH (Cpc-PH) (n = 15), and Control (no significant PH at rest and exercise) (n = 7). Measurements of mean pulmonary artery pressure, pulmonary artery wedge pressure, and cardiac output at each stage were used to calculate α. There was no statistical difference between α-exercise and α-PLR (0.87 ± 0.68 and 0.78 ± 0.47% per mmHg, respectively). The peak exercise- and PLR-based calculations of α among the four hemodynamic groups were: Ipc-PH = Ex: 0.94 ± 0.30, PLR: 1.00 ± 0.27% per mmHg; Cpc-PH = Ex: 0.51 ± 0.15, PLR: 0.47 ± 0.18% per mmHg; PAH = Ex: 0.39 ± 0.23, PLR: 0.34 ± 0.18% per mmHg; and the Control group: Ex: 2.13 ± 0.91, PLR: 1.45 ± 0.49% per mmHg. Patients with α ≥ 0.7% per mmHg had reduced cardiovascular death and hospital admissions at 12-month follow-up. In conclusion, α-PLR is feasible and may be equally predictive of clinical outcomes as α-exercise in patients who are unable to exercise or in programs lacking iCPET facilities.

4.
Clin Cardiol ; 45(7): 742-751, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35419844

RESUMEN

BACKGROUND: Among subjects with exercise intolerance and suspected early-stage pulmonary hypertension (PH), early identification of pulmonary vascular disease (PVD) with noninvasive methods is essential for prompt PH management. HYPOTHESIS: Rest gas exchange parameters (minute ventilation to carbon dioxide production ratio: VE /VCO2 and end-tidal carbon dioxide: ETCO2 ) can identify PVD in early-stage PH. METHODS: We conducted a retrospective review of 55 subjects with early-stage PH (per echocardiogram), undergoing invasive exercise hemodynamics with cardiopulmonary exercise test to distinguish exercise intolerance mechanisms. Based on the rest and exercise hemodynamics, three distinct phenotypes were defined: (1) PVD, (2) pulmonary venous hypertension, and (3) noncardiac dyspnea (no rest or exercise PH). For all tests, *p < .05 was considered statistically significant. RESULTS: The mean age was 63.3 ± 13.4 years (53% female). In the overall cohort, higher rest VE /VCO2 and lower rest ETCO2 (mm Hg) correlated with high rest and exercise pulmonary vascular resistance (PVR) (r ~ 0.5-0.6*). On receiver-operating characteristic analysis to predict PVD (vs. non-PVD) subjects with noninvasive metrics, area under the curve for pulmonary artery systolic pressure (echocardiogram) = 0.53, rest VE /VCO2 = 0.70* and ETCO2 = 0.73*. Based on this, optimal thresholds of rest VE /VCO2 > 40 mm Hg and rest ETCO2 < 30 mm Hg were applied to the overall cohort. Subjects with both abnormal gas exchange parameters (n = 12, vs. both normal parameters, n = 19) had an exercise PVR 5.2 ± 2.6* (vs. 1.9 ± 1.2), mPAP/CO slope with exercise 10.2 ± 6.0* (vs. 2.9 ± 2.0), and none included subjects from the noncardiac dyspnea group. CONCLUSIONS: In a broad cohort of subjects with suspected early-stage PH, referred for invasive exercise testing to distinguish mechanisms of exercise intolerance, rest gas exchange parameters (VE /VCO2 > 40 mm Hg and ETCO2 < 30 mm Hg) identify PVD.


Asunto(s)
Hipertensión Pulmonar , Dióxido de Carbono , Disnea/diagnóstico , Disnea/etiología , Prueba de Esfuerzo/métodos , Femenino , Hemodinámica , Humanos , Hipertensión Pulmonar/diagnóstico , Masculino , Consumo de Oxígeno
5.
JACC Case Rep ; 3(7): 1038-1043, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34317680

RESUMEN

A 48-year-old woman who had been receiving long-term interferon-ß for 8 years for multiple sclerosis developed drug-induced World Health Organization group I pulmonary arterial hypertension. Triple therapy for pulmonary arterial hypertension and suspension of interferon-ß led to improvement from a high-risk to low-risk state and improvement in exercise hemodynamics, including vascular distensibility, and right ventricle-pulmonary artery coupling. (Level of Difficulty: Advanced.).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA