Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
ACS Biomater Sci Eng ; 5(9): 4657-4670, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-33448838

RESUMEN

Self-assembled peptide nanofibers can form biomimetic hydrogels at physiological pH and ionic strength through noncovalent and reversible interactions. Inspired by natural antimicrobial peptides, we designed a class of cationic amphiphilic self-assembled peptides (CASPs) that self-assemble into thixotropic nanofibrous hydrogels. These constructs employ amphiphilicity and high terminal charge density to disrupt bacterial membranes. Here, we focus on three aspects of the self-assembly of these hydrogels: (a) the material properties of the individual self-assembled nanofibers, (b) emergence of bulk-scale elasticity in the nanofibrous hydrogel, and (c) trade-off between the desirable material properties and antimicrobial efficacy. The design of the supramolecular nanofibers allows for higher-order noncovalent ionic cross-linking of the nanofibers into a viscoelastic network. We determine the stiffness of the self-assembled nanofibers via the peak force quantitative nanomechanical atomic force microscopy and the bulk-scale rheometry. The storage moduli depend on peptide concentration, ionic strength, and concentration of multivalent ionic cross-linker. CASP nanofibers are demonstrated to be effective against Pseudomonas aeruginosa colonies. We use nanomechanical analysis and microsecond-time scale coarse-grained simulation to elucidate the interaction between the peptides and bacterial membranes. We demonstrate that the membranes stiffen, contract, and buckle after binding to peptide nanofibers, allowing disruption of osmotic equilibrium between the intracellular and extracellular matrix. This is further associated with dramatic changes in cell morphology. Our studies suggest that self-assembled peptide nanofibrils can potentially acts as membrane-disrupting antimicrobial agents, which can be formulated as injectable hydrogels with tunable material properties.

2.
Chem Biol Drug Des ; 93(6): 999-1010, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30480355

RESUMEN

New methods for the synthesis of higher-order siRNA motifs and their bioconjugates have recently gained widespread attention in the development of new and improved gene therapeutics. Our efforts aim to produce new chemical tools and protocols for the generation of modified siRNAs that screen for important oncogene targets as well as silence their activity for effective gene therapy in cancer models. More specifically, we have developed an efficient solution-phase synthesis for the production of a ribouridine branchpoint synthon that can be effectively incorporated by solid phase synthesis within higher-order RNA structures, including those adopting V-, and Y- and >-< shape RNA templates. Self-assembly of complementary RNA to the template strands produced higher-order siRNA nanostructures that were characterized by a combination of PAGE, DLS, and TEM techniques. In an effort to extend the repertoire of functionally diverse siRNAs, we have also developed solid phase bioconjugation strategies for incorporating bio-active probes such as fatty acid appendages and fluorescent reporters. Taken together, these methods highlight the ability to generate higher-order siRNAs and their bioconjugates for exploring the influence of modified siRNA structure on anti-cancer activity.


Asunto(s)
ARN Interferente Pequeño/biosíntesis , Técnicas de Síntesis en Fase Sólida/métodos , Nanoestructuras/química , Interferencia de ARN
3.
BMC Cancer ; 18(1): 1263, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30563499

RESUMEN

BACKGROUND: Glucose regulated protein 78 (GRP78) is a resident chaperone of the endoplasmic reticulum and a master regulator of the unfolded protein response under physiological and pathological cell stress conditions. GRP78 is overexpressed in many cancers, regulating a variety of signaling pathways associated with tumor initiation, proliferation, adhesion and invasion which contributes to metastatic spread. GRP78 can also regulate cell survival and apoptotic pathways to alter responsiveness to anticancer drugs. Tumors that reside in or metastasize to the bone and bone marrow (BM) space can develop pro-survival signals through their direct adhesive interactions with stromal elements of this niche thereby resisting the cytotoxic effects of drug treatment. In this study, we report a direct correlation between GRP78 and the adhesion molecule N-cadherin (N-cad), known to play a critical role in the adhesive interactions of multiple myeloma and metastatic prostate cancer with the bone microenvironment. METHODS: N-cad expression levels (transcription and protein) were evaluated upon siRNA mediated silencing of GRP78 in the MM.1S multiple myeloma and the PC3 metastatic prostate cancer cell lines. Furthermore, we evaluated the effects of GRP78 knockdown (KD) on epithelial-mesenchymal (EMT) transition markers, morphological changes and adhesion of PC3 cells. RESULTS: GRP78 KD led to concomitant downregulation of N-cad in both tumors types. In PC3 cells, GRP78 KD significantly decreased E-cadherin (E-cad) expression likely associated with the induction in TGF-ß1 expression. Furthermore, GRP78 KD also triggered drastic changes in PC3 cells morphology and decreased their adhesion to osteoblasts (OSB) dependent, in part, to the reduced N-cad expression. CONCLUSION: This work implicates GRP78 as a modulator of cell adhesion markers in MM and PCa. Our results may have clinical implications underscoring GRP78 as a potential therapeutic target to reduce the adhesive nature of metastatic tumors to the bone niche.


Asunto(s)
Neoplasias Óseas/genética , Proteínas de Choque Térmico/genética , Mieloma Múltiple/genética , Neoplasias de la Próstata/genética , Apoptosis/genética , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Cadherinas/genética , Adhesión Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Chaperón BiP del Retículo Endoplásmico , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/antagonistas & inhibidores , Humanos , Masculino , Mieloma Múltiple/patología , Metástasis de la Neoplasia , Osteoblastos/patología , Células PC-3 , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta1/genética
4.
ACS Omega ; 3(10): 12975-12984, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30411024

RESUMEN

The integration of therapy and diagnostics, termed "theranostics", has recently gained widespread utility in the development of new and improved therapeutics that effectively diagnose and treat diseases, such as cancer. In this study, the covalent attachment of multiple fluorescent labels (i.e., fluorescein isothiocyanate (FITC)) to a wide range of siRNAs, including those adopting linear, V- and Y-shape nanostructures, was successfully accomplished by solid-phase bioconjugation for monitoring cell uptake, co-localization, and biological activity in cell culture. The FITC-labeled higher-order V- and Y-shape siRNAs maintained the requisite hybrid stabilities and A-type helical structures for invoking RNAi activity. The FITC-siRNA hybrids with sense-strand modifiers enabled efficient mRNA knockdown (∼50-90%), which also translated to increased cell death (∼20-95%) in a bone metastatic prostate cancer cell line, over a 72 h incubation period. Significantly, the Y-shaped siRNA containing three FITC probes enhanced fluorescent signaling relative to the siRNA constructs containing single and double fluorophores while retaining potent knockdown and cell death effects post-transfection. Taken together, this data highlights the theranostic utility of the multilabeled FITC-siRNA constructs for potential cancer gene therapy applications.

5.
Bioconjug Chem ; 29(11): 3638-3648, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30235926

RESUMEN

The emerging field of RNAi nanotechnology has led to rapid advances in the applications of siRNAs in chemical biology, medicinal chemistry, and biotechnology. In our RNAi approach, bioconjugation of linear, V-, and Y-shaped RNA templates were designed using a series of saturated and unsaturated fatty acids to improve cell uptake and knockdown efficacy of the oncogenic glucose regulated proteins (GRPs) in prostate (PC-3) cancer cells. An optimized HCTU-coupling procedure was developed for tagging variable saturated and unsaturated fatty acids onto the 5'-ends of linear and V-shaped RNA templates that were constructed by semiautomated solid phase RNA synthesis. Hybridization and self-assembly of complementary strands yielded linear, V-, and Y-shaped fatty acid-conjugated siRNAs which were characterized by native PAGE. CD spectroscopy confirmed their A-type helix conformations. RP IP HPLC provided trends in amphiphilic properties, whereas DLS and TEM confirmed multicomponent self-assembled structures that were prone to aggregation. Subsequently, the fatty acid conjugated siRNA bioconjugates were tested for their RNAi activity by direct transfection within PC-3 cells known to overexpress oncogenic GRP activity. The siRNA bioconjugates with sense strand modifiers provided more potent GRP knockdown relative to the antisense modified siRNAs, but to a lesser extent when compared to the unconjugated siRNA controls that were transfected with the commercial Trans-IT X2 dynamic delivery system. Flow cytometry revealed that the latter may be at least in part attributed to limited cell uptake of the fatty acid conjugated siRNAs. Nonetheless, these new constructs represent an entry point in modifying higher-order siRNA constructs that may lead to the generation of more efficient siRNA bioconjugates for screening important oncogene targets and for cancer gene therapy applications.


Asunto(s)
Ácidos Grasos/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Chaperonas Moleculares/genética , Neoplasias de la Próstata/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transfección , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Citometría de Flujo , Humanos , Masculino , Microscopía Electrónica de Transmisión , Chaperonas Moleculares/metabolismo , Electroforesis en Gel de Poliacrilamida Nativa , Neoplasias de la Próstata/patología , Interferencia de ARN , Espectrometría de Masa por Ionización de Electrospray
6.
Nano Lett ; 16(10): 6099-6108, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27669096

RESUMEN

The emerging field of RNA nanotechnology has been used to design well-programmed, self-assembled nanostructures for applications in chemistry, biology, and medicine. At the forefront of its utility in cancer is the unrestricted ability to self-assemble multiple siRNAs within a single nanostructure formulation for the RNAi screening of a wide range of oncogenes while potentiating the gene therapy of malignant tumors. In our RNAi nanotechnology approach, V- and Y-shape RNA templates were designed and constructed for the self-assembly of discrete, higher-ordered siRNA nanostructures targeting the oncogenic glucose regulated chaperones. The GRP78-targeting siRNAs self-assembled into genetically encoded spheres, triangles, squares, pentagons and hexagons of discrete sizes and shapes according to TEM imaging. Furthermore, gel electrophoresis, thermal denaturation, and CD spectroscopy validated the prerequisite siRNA hybrids for their RNAi application. In a 24 sample siRNA screen conducted within the AN3CA endometrial cancer cells known to overexpress oncogenic GRP78 activity, the self-assembled siRNAs targeting multiple sites of GRP78 expression demonstrated more potent and long-lasting anticancer activity relative to their linear controls. Extending the scope of our RNAi screening approach, the self-assembled siRNA hybrids (5 nM) targeting of GRP-75, 78, and 94 resulted in significant (50-95%) knockdown of the glucose regulated chaperones, which led to synergistic effects in tumor cell cycle arrest (50-80%) and death (50-60%) within endometrial (AN3CA), cervical (HeLa), and breast (MDA-MB-231) cancer cell lines. Interestingly, a nontumorigenic lung (MRC5) cell line displaying normal glucose regulated chaperone levels was found to tolerate siRNA treatment and demonstrated less toxicity (5-20%) relative to the cancer cells that were found to be addicted to glucose regulated chaperones. These remarkable self-assembled siRNA nanostructures may thus encompass a new class of potent siRNAs that may be useful in screening important oncogene targets while improving siRNA therapeutic efficacy and specificity in cancer.

7.
ChemMedChem ; 11(3): 252-69, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26663095

RESUMEN

Nucleoside- and nucleotide-based chemotherapeutics have been used to treat cancer for more than 50 years. However, their inherent cytotoxicities and the emergent resistance of tumors against treatment has inspired a new wave of compounds in which the overall pharmacological profile of the bioactive nucleic acid component is improved by conjugation with delivery vectors, small-molecule drugs, and/or imaging modalities. In this manner, nucleic acid bioconjugates have the potential for targeting and effecting multiple biological processes in tumors, leading to synergistic antitumor effects. Consequently, tumor resistance and recurrence is mitigated, leading to more effective forms of cancer therapy. Bioorthogonal chemistry has led to the development of new nucleoside bioconjugates, which have served to improve treatment efficacy en route towards FDA approval. Similarly, oligonucleotide bioconjugates have shown encouraging preclinical and clinical results. The modified oligonucleotides and their pharmaceutically active formulations have addressed many weaknesses of oligonucleotide-based drugs. They have also paved the way for important advancements in cancer diagnosis and treatment. Cancer-targeting ligands such as small-molecules, peptides, and monoclonal antibody fragments have all been successfully applied in oligonucleotide bioconjugation and have shown promising anticancer effects in vitro and in vivo. Thus, the application of bioorthogonal chemistry will, in all likelihood, continue to supply a promising pipeline of nucleic acid bioconjugates for applications in cancer detection and therapy.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Ácidos Nucleicos/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Humanos , Ácidos Nucleicos/uso terapéutico , Oligonucleótidos/química , Oligonucleótidos/uso terapéutico , Péptidos/química , Péptidos/uso terapéutico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico
8.
PLoS One ; 8(12): e83421, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24391764

RESUMEN

Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs) mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC) data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) protein in the complex with a mitogen-activated protein (MAP) kinase, extracellular regulated kinase 2 (ERK2), which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Fosfoproteínas/química , Dominios y Motivos de Interacción de Proteínas , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Enlace de Hidrógeno , Ratones , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosfoproteínas/metabolismo , Estructura Secundaria de Proteína , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...