RESUMEN
A novel bacterial strain, designated GeG2T, was isolated from soils of the native Cerrado, a highly biodiverse savanna-like Brazilian biome. 16S rRNA gene analysis of GeG2T revealed high sequence identity (100%) to the alphaproteobacterium Novosphingobium rosa; however, comparisons with N. rosa DSM 7285T showed several distinctive features, prompting a full characterization of the new strain in terms of physiology, morphology, and, ultimately, its genome. GeG2T cells were Gram-stain-negative bacilli, facultatively anaerobic, motile, positive for catalase and oxidase activities, and starch hydrolysis. Strain GeG2T presented planktonic-sessile dimorphism and cell aggregates surrounded by extracellular matrix and nanometric spherical structures were observed, suggesting the production of exopolysaccharides (EPS) and outer membrane vesicles (OMVs). Despite high 16S rDNA identity, strain GeG2T showed 90.38% average nucleotide identity and 42.60% digital DNA-DNA hybridization identity with N. rosa, below species threshold. Whole-genome assembly revealed four circular replicons: a 4.1 Mb chromosome, a 2.7 Mb extrachromosomal megareplicon, and two plasmids (212.7 and 68.6 kb). The megareplicon contains a few core genes and plasmid-type replication/maintenance systems, consistent with its classification as a chromid. Genome annotation shows a vast repertoire of carbohydrate-active enzymes and genes involved in the degradation of aromatic compounds, highlighting the biotechnological potential of the new isolate. Chemotaxonomic features, including polar lipid and fatty acid profiles, as well as physiological, molecular, and whole-genome comparisons showed significant differences between strain GeG2T and N. rosa, indicating that it represents a novel species, for which the name Novosphingobium terrae is proposed. The type strain is GeG2T (= CBMAI 2313T = CBAS 753 T).
Asunto(s)
Fosfolípidos , Suelo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Ubiquinona/química , Ubiquinona/genética , Filogenia , Técnicas de Tipificación Bacteriana , Microbiología del Suelo , Ácidos Grasos/química , GenómicaRESUMEN
Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii. A family of lipopeptides with [M + H]+ 1664, 1678, 1702, and 1717 m/z was purified from the culture cell fraction. Partial characterization revealed that they are similar to tridecaptin from P. terrae. However, they present amino acid chain modifications in positions 3, 7, and 10. These new variants were named tridecaptin G1, G2, G3, and G4. Furthermore, a gene cluster was identified in P. elgii AC13 genome, revealing high similarity to the tridecaptin-NRPS gene cluster from P. terrae. Tridecaptin G1 and G2 showed in vitro antimicrobial activity against Escherichia coli, Klebsiella pneumonia (including a multidrug-resistant strain), Staphylococcus aureus, and Candida albicans. Tri G3 did not show antimicrobial activity against S. aureus and C. albicans at all tested concentrations. An intriguing feature of this family of lipopeptides is that it was only observed in the cell fraction of the P. elgii AC13 culture, which could be a result of the amino acid sequence modifications presented in these variants.
Asunto(s)
Lipopéptidos , Paenibacillus , Lipopéptidos/farmacología , Lipopéptidos/química , Staphylococcus aureus , Paenibacillus/genética , Paenibacillus/metabolismo , Antibacterianos/química , Escherichia coli/metabolismoRESUMEN
Lignin is nature's largest source of phenolic compounds. Its recalcitrance to enzymatic conversion is still a limiting step to increase the value of lignin. Although bacteria are able to degrade lignin in nature, most studies have focused on lignin degradation by fungi. To understand which bacteria are able to use lignin as the sole carbon source, natural selection over time was used to obtain enriched microbial consortia over a 12-week period. The source of microorganisms to establish these microbial consortia were commercial and backyard compost soils. Cultivation occurred at two different temperatures, 30°C and 37°C, in defined culture media containing either Kraft lignin or alkaline-extracted lignin as carbon source. iTag DNA sequencing of bacterial 16S rDNA gene was performed for each of the consortia at six timepoints (passages). The initial bacterial richness and diversity of backyard compost soil consortia was greater than that of commercial soil consortia, and both parameters decreased after the enrichment protocol, corroborating that selection was occurring. Bacterial consortia composition tended to stabilize from the fourth passage on. After the enrichment protocol, Firmicutes phylum bacteria were predominant when lignin extracted by alkaline method was used as a carbon source, whereas Proteobacteria were predominant when Kraft lignin was used. Bray-Curtis dissimilarity calculations at genus level, visualized using NMDS plots, showed that the type of lignin used as a carbon source contributed more to differentiate the bacterial consortia than the variable temperature. The main known bacterial genera selected to use lignin as a carbon source were Altererythrobacter, Aminobacter, Bacillus, Burkholderia, Lysinibacillus, Microvirga, Mycobacterium, Ochrobactrum, Paenibacillus, Pseudomonas, Pseudoxanthomonas, Rhizobiales and Sphingobium. These selected bacterial genera can be of particular interest for studying lignin degradation and utilization, as well as for lignin-related biotechnology applications.
Asunto(s)
Bacterias/clasificación , Biodiversidad , ADN Bacteriano/genética , Lignina/metabolismo , Consorcios Microbianos , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , ADN Bacteriano/análisis , ARN Ribosómico 16S/análisisRESUMEN
We report the genome sequence of a polyethylene-degrading bacterial strain identified as Stenotrophomonas maltophilia strain PE591, which was isolated from plastic debris found in savanna soil. The genome was assembled in 16 scaffolds with a length of 4,751,236 bp, a GC content of 66.5%, and 4,432 predicted genes.
RESUMEN
The Brazilian regions are still highly endemic areas for Canine morbillivirus [canine distemper virus (CDV)]. However, little is known regarding the genetic variability of the strain circulating in several Brazilian regions. Here, we report the first full-length genome and molecular characterization of CDV isolated from domestic dogs in the Brazilian Center-West region. Sequence alignment and phylogenetic analyses based on deduced amino acid and nucleotide sequences showed that the isolated strain is characterized as the South America-I/Europe genotype. However, it segregates into a CDV subgenotype branch. Interestingly, both H and F proteins have a gain of a potential N-glycosylation sites compared to the Onderstepoort vaccine strain. Therefore, this study provides a reference to further understand the epidemic and molecular characteristics of the CDV in Brazil.
Asunto(s)
Virus del Moquillo Canino/genética , Virus del Moquillo Canino/aislamiento & purificación , Perros/virología , Genoma Viral , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Brasil , Moquillo/virología , Genes Virales , Genotipo , Glicosilación , Filogenia , Recombinación Genética/genética , Selección Genética , Proteínas Virales/química , Proteínas Virales/genéticaRESUMEN
Biological nitrogen fixation (BNF) represents the main input source of N in tropical savannas. BNF could be particularly important for Brazilian savannas (known as Cerrado) that show a highly conservative N cycle. We evaluated the effects of seasonal precipitation and nutrient additions on the nifH gene abundance in soils from a long-term fertilization experiment in a Cerrado's native area. The experiment consists of five treatments: (1) control, (2) liming, (3) nitrogen (N), (4) nitrogen + phosphorus (NP), and (5) phosphorus (P) additions. The nifH gene sequence was related to Bradyrhizobium members. Seasonal effects on N-fixing potential were observed by a decrease in the nifH relative abundance from rainy to dry season in control, N, and NP treatments. A significant reduction in nifH abundance was found in the liming treatment in both seasons. The findings evidenced the multiple factors controlling the potential N-fixing by free-living diazotrophs in these nutrient-limited and seasonally dry ecosystems.
RESUMEN
Functional screening of metagenomic libraries is an effective approach for identification of novel enzymes. A Caatinga biome goat rumen metagenomic library was screened using esculin as a substrate, and a gene from an unknown bacterium encoding a novel GH3 enzyme, BGL11, was identified. None of the BGL11 closely related genes have been previously characterized. Recombinant BGL11 was obtained and kinetically characterized. Substrate specificity of the purified protein was assessed using seven synthetic aryl substrates. Activity towards nitrophenyl-ß-D-glucopyranoside (pNPG), 4-nitrophenyl-ß-D-xylopyranoside (pNPX) and 4-nitrophenyl-ß-D-cellobioside (pNPC) suggested that BGL11 is a multifunctional enzyme with ß-glucosidase, ß-xylosidase, and cellobiohydrolase activities. However, further testing with five natural substrates revealed that, although BGL11 has multiple substrate specificity, it is most active towards xylobiose. Thus, in its native goat rumen environment, BGL11 most likely functions as an extracellular ß-xylosidase acting on hemicellulose. Biochemical characterization of BGL11 showed an optimal pH of 5.6, and an optimal temperature of 50°C. Enzyme stability, an important parameter for industrial application, was also investigated. At 40°C purified BGL11 remained active for more than 15 hours without reduction in activity, and at 50°C, after 7 hours of incubation, BGL11 remained 60% active. The enzyme kinetic parameters of Km and Vmax using xylobiose were determined to be 3.88 mM and 38.53 µmol.min-1.mg-1, respectively, and the Kcat was 57.79 s-1. In contrast to BLG11, most ß-xylosidases kinetically studied belong to the GH43 family and have been characterized only using synthetic substrates. In industry, ß-xylosidases can be used for plant biomass deconstruction, and the released sugars can be fermented into valuable bio-products, ranging from the biofuel ethanol to the sugar substitute xylitol.
Asunto(s)
Cabras/microbiología , Metagenoma , Polisacáridos/química , Rumen/microbiología , Xilosidasas , Animales , Estabilidad de Enzimas , Calor , Cinética , Metagenómica , Especificidad por Sustrato , Xilosidasas/química , Xilosidasas/genéticaRESUMEN
Natural ponds in the Brazilian Cerrado harbor high biodiversity but are still poorly studied, especially their microbial assemblage. The characterization of the microbial community in aquatic environments is fundamental for understanding its functioning, particularly under the increasing pressure posed by land conversion and climate change. Here, we aim to characterize the structure (abundance, richness, and diversity) and composition of the Bacteria and Archaea in the sediment of two natural ponds belonging to different basins that primarily differ in size and depth in the Cerrado. Sediment samples were collected in the dry and rainy seasons and the transition periods between both. The structure and composition of Bacteria and Archaea were assessed by 16S rRNA gene pyrosequencing. We identified 45 bacterial and four archaeal groups. Proteobacteria and Acidobacteria dominated the bacterial community, while Euryarchaeota and Thaumarchaeota dominated the archaeal community. Seasonal fluctuations in the relative abundance of microbial taxa were observed, but pond characteristics were more determinant to community composition differences. Microbial communities are highly diverse, and local variability could partially explain the microbial structure's main differences. Functional predictions based in 16S rRNA gene accessed with Tax4Fun indicated an enriched abundance of predicted methane metabolism in the deeper pond, where higher abundance of methanogenic archaea Methanocella, Methanosaeta, and Methanomicrobiaceae was detected. Our dataset encompasses the more comprehensive survey of prokaryotic microbes in Cerrado's aquatic environments. Here, we present basic and essential information about composition and diversity, for initial insights into the ecology of Bacteria and Archaea in these environments.
Asunto(s)
Archaea , Estanques , Archaea/genética , Bacterias/genética , Biodiversidad , Sedimentos Geológicos , Filogenia , ARN Ribosómico 16S/genéticaRESUMEN
Strain K001 was isolated from a cyanobacterial culture derived from Abrolhos, a reef bank microbial mat (South Atlantic Ocean-Brazil). Cells of K001 are Gram stain-negative, catalase and oxidase-positive, non-motile, rod-shaped, and with or without appendages. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain K001 belongs to the genus Muricauda. The highest strain K001 16S rRNA gene identity, ANI, and dDDH, respectively, are with M. aquimarina (98.90%, 79.23, 21.60%), M. ruestringensis (98.20%, 80.82, 23.40%), and M. lutimaris (97.86%, 79.23, 22.70%). The strain grows at 15-37 °C and between 0.5 and 10% NaCl. The major fatty acids of strain K001 are iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The polar lipids are represented by phosphatidylethanolamine, three unidentified aminolipids, and three unidentified polar lipids. The major respiratory quinone is MK-6. The G+C content of the DNA of strain K001 is 41.62 mol%. Based on polyphasic analysis of strain K001, it was identified as a novel representative of the genus Muricauda and was named Muricauda brasiliensis sp. nov. The type strain is K001 (=CBMAI 2315T = CBAS 752T).
Asunto(s)
Cianobacterias/metabolismo , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Genoma Bacteriano , Filogenia , Composición de Base , Brasil , ADN Bacteriano/genética , Ácidos Grasos/análisis , Flavobacteriaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADNRESUMEN
In this study, a GH3 family ß-glucosidase (Bgl7226) from metagenomic sequences of the Syntermes wheeleri gut, a Brazilian Cerrado termite, was expressed, purified and characterized. The enzyme showed two optimum pHs (pH 7 and pH 10), and a maximum optimum temperature of about 40 °C using 4-Nitrophenyl ß-D-glucopyranoside (pNPG) as substrate. Bgl7226 showed higher enzymatic activity at basic pH, but higher affinity (Km) at neutral pH. However, at neutral pH the Bgl7226 enzyme showed higher catalytic efficiency (kcat/Km) for pNPG substrate. Predictive analysis about the enzyme structure-function relationship by sequence alignment suggested the presence of multi-domains and conserved catalytic sites. Circular dichroism results showed that the secondary structure composition of the enzyme is pH-dependent. Small conformational changes occurred close to the optimum temperature of 40 o C, and seem important for the highest activity of Bgl7226 observed at pH 7 and 10. In addition, the small transition in the unfolding curves close to 40 o C is typical of intermediates associated with proteins structured in several domains. Bgl7226 has significant ß-glucosidase activity which could be attractive for biotechnological applications, such as plant roots detoxification; specifically, our group is interested in cassava roots (Manihot esculenta) detoxification.
Asunto(s)
Microbioma Gastrointestinal , Isópteros/microbiología , Metagenoma , beta-Glucosidasa , Animales , Estabilidad de Enzimas , Especificidad por Sustrato , beta-Glucosidasa/química , beta-Glucosidasa/genéticaRESUMEN
Eusocial animals, such as the termites, often build a nest-like structure called a mound that provides shelter with stable internal conditions and protection against predators. Termites are important components of the Brazilian Cerrado biota. This study aimed to investigate the bacterial community composition and diversity of the Syntermes wheeleri termite-mound soil using culture-independent approaches. We considered the vertical profile by comparing two different mound depths (mound surface and 60 cm) and seasonality with samplings during the rainy and dry seasons. We compared the mound soil microbiota to the adjacent soil without the influence of the mound to test the hypothesis that the Cerrado soil bacterial community was more diverse and more susceptible to seasonality than the mound soil microbiota. The results support the hypothesis that the Cerrado soil bacterial community is more diverse than the mound soil and also has a higher variability among seasons. The number of observed OTUs (Operational Taxonomic Units) was used to express bacterial richness, and it indicates that soil moisture has an effect on the community distribution and richness of the Cerrado samples in comparison to mound samples, which remain stable across seasons. This could be a consequence of the protective role of the mound for the termite colony. The overall community taxonomic profile was similar between soil samples, especially when compared to the taxonomic composition of the Syntermes wheeleri termite's gut, which might be explained by the different characteristics and functionality between the soil and the gut microbial community.
RESUMEN
Holocellulase production by Aspergillus niger using raw sugarcane bagasse (rSCB) as the enzyme-inducing substrate is hampered by the intrinsic recalcitrance of this material. Here we report that mild hydrothermal pretreatment of rSCB increases holocellulase secretion by A. niger. Quantitative proteomic analysis revealed that pretreated solids (PS) induced a pronounced up-regulation of endoglucanases and cellobiohydrolases compared to rSCB, which resulted in a 10.1-fold increase in glucose release during SCB saccharification. The combined use of PS and pretreatment liquor (PL), referred to as whole pretreated slurry (WPS), as carbon source induced a more balanced up-regulation of cellulases, hemicellulases and pectinases and resulted in the highest increase (4.8-fold) in the release of total reducing sugars from SCB. The use of PL as the sole carbon source induced the modulation of A. niger's secretome towards hemicellulose degradation. Mild pretreatment allowed the use of PL in downstream biological operations without the need for undesirable detoxification steps.
Asunto(s)
Aspergillus niger/enzimología , Celulosa/metabolismo , Glicósido Hidrolasas/metabolismo , Saccharum/metabolismo , Aspergillus niger/genética , Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Hidrólisis , ProteómicaRESUMEN
BACKGROUND: Canine morbillivirus (canine distemper virus, CDV) persists as a serious threat to the health of domestic dogs and wildlife. Although studies have been conducted on the frequency and risk factors associated with CDV infection, there are no comprehensive data on the current epidemiological magnitude in the domestic dog population at regional and national levels. Therefore, we conducted a cross-sectional study and included our results in a meta-analysis to summarize and combine available data on the frequency and potential risk factors associated with CDV infection. METHODS: For the cross-sectional study, biological samples from dogs suspected to have canine distemper (CD) were collected and screened for viral RNA. Briefly, the PRISMA protocol was used for the meta-analysis, and data analyses were performed using STATA IC 13.1 software. RESULTS: CDV RNA was detected in 34% (48/141) of dogs suspected to have CD. Following our meta-analysis, 53 studies were selected for a total of 11,527 dogs. Overall, the pooled frequency of CDV positivity based on molecular and serological results were 33% (95% CI: 23-43) and 46% (95% CI: 36-57), respectively. The pooled subgroup analyses of clinical signs, types of biological samples, diagnostic methods and dog lifestyle had a wide range of CDV positivity (range 8-75%). Free-ranging dogs (OR: 1.44, 95% CI: 1.05-1.97), dogs >24 months old (OR: 1.83, 95% CI: 1.1-3) and unvaccinated dogs (OR: 2.92, 95% CI: 1.26-6.77) were found to be positively associated with CDV infection. In contrast, dogs <12 months old (OR: 0.36, 95% CI: 0.20-0.64) and dogs with a complete anti-CDV vaccination (OR: 0.18, 95% CI: 0.05-0.59) had a negative association. CONCLUSION: Considering the high frequency of CDV positivity associated with almost all the variables analyzed in dogs, it is necessary to immediately and continuously plan mitigation strategies to reduce the CDV prevalence, especially in determined endemic localities.
Asunto(s)
Virus del Moquillo Canino , Moquillo , ARN Viral , Animales , Estudios Transversales , Moquillo/sangre , Moquillo/epidemiología , Moquillo/genética , Moquillo/prevención & control , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/metabolismo , Perros , Prevalencia , ARN Viral/sangre , ARN Viral/genéticaRESUMEN
OBJECTIVE: To isolate putative lipase enzymes by screening a Cerrado soil metagenomic library with novel features. RESULTS: Of 6720 clones evaluated, Clone W (10,000 bp) presented lipolytic activity and four predicted coding sequences, one of them LipW. Characterization of a predicted esterase/lipase, LipW, showed 28% sequence identity with an arylesterase from Pseudomonas fluorescens (pdb|3HEA) from protein database (PDB). Phylogenetic analysis showed LipW clustered with family V lipases; however, LipW was clustered in different subclade belonged to family V, suggesting a different subgroup of family V. In addition, LipW presented a difference in family V GH motif, a glycine replaced by a serine in GH motif. Estimated molecular weight and stokes radius values of LipW were 29,338.67-29,411.98 Da and 2.58-2.83 nm, respectively. Optimal enzyme activity was observed at pH 9.0-9.5 and at 40 °C. Circular dichroism analysis estimated secondary structures percentages as approximately 45% α-helix and 15% ß-sheet, consistent with the 3D structure predicted by homology. CONCLUSION: Our results demonstrate the isolation of novel family V lipolytic enzyme with biotechnological applications from a metagenomic library.
Asunto(s)
Esterasas/genética , Esterasas/metabolismo , Microbiología del Suelo , Secuencias de Aminoácidos , Brasil , Dicroismo Circular , Clonación Molecular , Esterasas/química , Metagenoma , Modelos Moleculares , Peso Molecular , Filogenia , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de FluorescenciaRESUMEN
A Paenibacillus elgii strain isolated from soil samples from Cerrado, Brazil, showed antimicrobial activity. Its genome sequence was acquired (GS20 FLX Titanium 454 platform) and comprises 108 contigs (N50, 198,427 bp) and 6,810 predicted sequences. Here, we shed some light on the antimicrobial genes of the strain, including a nonribosomal peptide synthetase (NRPS) module identified as part of a pelgipeptin gene cluster.
RESUMEN
Semi-arid and arid areas occupy about 33% of terrestrial ecosystems. However, little information is available about microbial diversity in the semi-arid Caatinga, which represents a unique biome that extends to about 11% of the Brazilian territory and is home to extraordinary diversity and high endemism level of species. In this study, we characterized the diversity of microbial genes associated with biomass conversion (carbohydrate-active enzymes, or so-called CAZYmes) in soil and freshwater of the Caatinga. Our results showed distinct CAZYme profiles in the soil and freshwater samples. Glycoside hydrolases and glycosyltransferases were the most abundant CAZYme families, with glycoside hydrolases more dominant in soil (â¼44%) and glycosyltransferases more abundant in freshwater (â¼50%). The abundances of individual glycoside hydrolase, glycosyltransferase, and carbohydrate-binding module subfamilies varied widely between soil and water samples. A predominance of glycoside hydrolases was observed in soil, and a higher contribution of enzymes involved in carbohydrate biosynthesis was observed in freshwater. The main taxa associated with the CAZYme sequences were Planctomycetia (relative abundance in soil, 29%) and Alphaproteobacteria (relative abundance in freshwater, 27%). Approximately 5-7% of CAZYme sequences showed low similarity with sequences deposited in non-redundant databases, suggesting putative homologues. Our findings represent a first attempt to describe specific microbial CAZYme profiles for environmental samples. Characterizing these enzyme groups associated with the conversion of carbohydrates in nature will improve our understanding of the significant roles of enzymes in the carbon cycle. We identified a CAZYme signature that can be used to discriminate between soil and freshwater samples, and this signature may be related to the microbial species adapted to the habitat. The data show the potential ecological roles of the CAZYme repertoire and associated biotechnological applications.
Asunto(s)
Enzimas/análisis , Agua Dulce/química , Suelo/química , Alphaproteobacteria/enzimología , Brasil , Carbohidratos , Glicósido Hidrolasas/análisis , Glicosiltransferasas/análisis , Planctomycetales/enzimología , Microbiología del Suelo , Microbiología del AguaRESUMEN
Antibiotic resistance has become a major concern for human and animal health, as therapeutic alternatives to treat multidrug-resistant microorganisms are rapidly dwindling. The problem is compounded by low investment in antibiotic research and lack of new effective antimicrobial drugs on the market. Exploring environmental antibiotic resistance genes (ARGs) will help us to better understand bacterial resistance mechanisms, which may be the key to identifying new drug targets. Because most environment-associated microorganisms are not yet cultivable, culture-independent techniques are essential to determine which organisms are present in a given environmental sample and allow the assessment and utilization of the genetic wealth they represent. Metagenomics represents a powerful tool to achieve these goals using sequence-based and functional-based approaches. Functional metagenomic approaches are particularly well suited to the identification new ARGs from natural environments because, unlike sequence-based approaches, they do not require previous knowledge of these genes. This review discusses functional metagenomics-based ARG research and describes new possibilities for surveying the resistome in environmental samples.
Asunto(s)
Farmacorresistencia Microbiana/genética , Ambiente , Metagenoma/genética , Metagenómica/métodos , Animales , Antibacterianos/clasificación , Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Secuencia de Bases , Técnicas de Cultivo , ADN Bacteriano , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/fisiología , Genes Bacterianos/genética , HumanosRESUMEN
This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied.
Asunto(s)
Archaea/crecimiento & desarrollo , Archaea/aislamiento & purificación , Biodiversidad , Microbiología del Suelo , Archaea/clasificación , Archaea/genética , Brasil , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Euryarchaeota , Bosques , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
The Cerrado, the largest savanna region in South America, is located in central Brazil. Cerrado physiognomies, which range from savanna grasslands to forest formations, combined with the highly weathered, acidic clay Cerrado soils form a unique ecoregion. In this study, high-throughput sequencing of ribosomal RNA genes was combined with shotgun metagenomic analysis to explore the taxonomic composition and potential functions of soil microbial communities in four different vegetation physiognomies during both dry and rainy seasons. Our results showed that changes in bacterial, archaeal, and fungal community structures in cerrado denso, cerrado sensu stricto, campo sujo, and gallery forest soils strongly correlated with seasonal patterns of soil water uptake. The relative abundance of AD3, WPS-2, Planctomycetes, Thermoprotei, and Glomeromycota typically decreased in the rainy season, whereas the relative abundance of Proteobacteria and Ascomycota increased. In addition, analysis of shotgun metagenomic data revealed a significant increase in the relative abundance of genes associated with iron acquisition and metabolism, dormancy, and sporulation during the dry season, and an increase in the relative abundance of genes related to respiration and DNA and protein metabolism during the rainy season. These gene functional categories are associated with adaptation to water stress. Our results further the understanding of how tropical savanna soil microbial communities may be influenced by vegetation covering and temporal variations in soil moisture.
Asunto(s)
Archaea , Bacterias , Hongos , Pradera , Metagenoma , Microbiología del Suelo , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Brasil , Hongos/clasificación , Hongos/genética , Hongos/crecimiento & desarrolloRESUMEN
The Caatinga is a semi-arid biome in northeast Brazil. The Paraguaçú River is located in the Caatinga biome, and part of its course is protected by the National Park of Chapada Diamantina (PNCD). In this study we evaluated the effect of PNCD protection on the water quality and microbial community diversity of this river by analyzing water samples obtained from points located inside and outside the PNCD in both wet and dry seasons. Results of water quality analysis showed higher levels of silicate, ammonia, particulate organic carbon, and nitrite in samples from the unprotected area compared with those from protected areas. Pyrosequencing of the 16S rRNA genes revealed that Burkholderiales was abundant in samples from all three sites during both seasons and was represented primarily by the genus Polynucleobacter and members of the Comamonadaceae family (e.g., genus Limnohabitans). During the dry season, the unprotected area showed a higher abundance of Flavobacterium sp. and Arthrobacter sp., which are frequently associated with the presence and/or degradation of arsenic and pesticide compounds. In addition, genes that appear to be related to agricultural impacts on the environment, as well as those involved in arsenic and cadmium resistance, copper homeostasis, and propanediol utilization, were detected in the unprotected areas by metagenomic sequencing. Although PNCD protection improves water quality, agricultural activities around the park may affect water quality within the park and may account for the presence of bacteria capable of pesticide degradation and assimilation, evidencing possible anthropogenic impacts on the Caatinga.