Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903800

RESUMEN

A broad range of inorganic nanoparticles (NPs) and their dissolved ions possess a possible toxicological risk for human health and the environment. Reliable and robust measurements of dissolution effects may be influenced by the sample matrix, which challenges the analytical method of choice. In this study, CuO NPs were investigated in several dissolution experiments. Two analytical techniques (dynamic light scattering (DLS) and inductively-coupled plasma mass spectrometry (ICP-MS)) were used to characterize NPs (size distribution curves) time-dependently in different complex matrices (e.g., artificial lung lining fluids and cell culture media). The advantages and challenges of each analytical approach are evaluated and discussed. Additionally, a direct-injection single particle (DI sp)ICP-MS technique for assessing the size distribution curve of the dissolved particles was developed and evaluated. The DI technique provides a sensitive response even at low concentrations without any dilution of the complex sample matrix. These experiments were further enhanced with an automated data evaluation procedure to objectively distinguish between ionic and NP events. With this approach, a fast and reproducible determination of inorganic NPs and ionic backgrounds can be achieved. This study can serve as guidance when choosing the optimal analytical method for NP characterization and for the determination of the origin of an adverse effect in NP toxicity.

2.
Part Fibre Toxicol ; 19(1): 37, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35578293

RESUMEN

BACKGROUND: TiO2 nanomaterials (NMs) are present in a variety of food and personal hygiene products, and consumers are exposed daily to these NMs through oral exposition. While the bulk of ingested TiO2 NMs are eliminated rapidly in stool, a fraction is able to cross the intestinal epithelial barrier and enter systemic circulation from where NMs can be distributed to tissues, primarily liver and spleen. Daily exposure to TiO2 NMs, in combination with a slow rate of elimination from tissues, results in their accumulation within different tissues. Considerable evidence suggests that following oral exposure to TiO2 NMs, the presence of NMs in tissues is associated with a number of adverse effects, both in intestine and liver. Although numerous studies have been performed in vitro investigating the acute effects of TiO2 NMs in intestinal and hepatic cell models, considerably less is known about the effect of repeated exposure on these models. In this study, we investigated the cytotoxic effects of repeated exposure of relevant models of intestine and liver to two TiO2 NMs differing in hydrophobicity for 24 h, 1 week and 2 weeks at concentrations ranging from 0.3 to 80 µg/cm2. To study the persistence of these two NMs in cells, we included a 1-week recovery period following 24 h and 1-week treatments. Cellular uptake by TEM and ToF-SIMS analyses, as well as the viability and pro-inflammatory response were evaluated. Changes in the membrane composition in Caco-2 and HepaRG cells treated with TiO2 NMs for up to 2 weeks were also studied. RESULTS: Despite the uptake of NM-103 and NM-104 in cells, no significant cytotoxic effects were observed in either Caco-2 or HepaRG cells treated for up to 2 weeks at NM concentrations up to 80 µg/cm2. In addition, no significant effects on IL-8 secretion were observed. However, significant changes in membrane composition were observed in both cell lines. Interestingly, while most of these phospholipid modifications were reversed following a 1-week recovery, others were not affected by the recovery period. CONCLUSION: These findings indicate that although no clear effects on cytotoxicity were observed following repeated exposure of differentiated Caco-2 and HepaRG cells to TiO2 NMs, subtle effects on membrane composition could induce potential adverse effects in the long-term.


Asunto(s)
Nanoestructuras , Titanio , Células CACO-2 , Hepatocitos , Humanos , Intestinos , Hígado , Nanoestructuras/toxicidad , Titanio/toxicidad
3.
Toxicol In Vitro ; 78: 105257, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34688838

RESUMEN

Exposure of consumers to aluminum-containing nanomaterials (Al NMs) is an area of concern for public health agencies. As the available data on the genotoxicity of Al2O3 and Al0 NMs are inconclusive or rare, the present study investigated their in vitro genotoxic potential in intestinal and liver cell models, and compared with the ionic form AlCl3. Intestinal Caco-2 and hepatic HepaRG cells were exposed to Al0 and Al2O3 NMs (0.03 to 80 µg/cm2). Cytotoxicity, oxidative stress and apoptosis were measured using High Content Analysis. Genotoxicity was investigated through γH2AX labelling, the alkaline comet and micronucleus assays. Moreover, oxidative DNA damage and carcinogenic properties were assessed using the Fpg-modified comet assay and the cell transforming assay in Bhas 42 cells respectively. The three forms of Al did not induce chromosomal damage. However, although no production of oxidative stress was detected, Al2O3 NMs induced oxidative DNA damage in Caco-2 cells but not likely related to ion release in the cell media. Considerable DNA damage was observed with Al0 NMs in both cell lines in the comet assay, likely due to interference with these NMs. No genotoxic effects were observed with AlCl3. None of the Al compounds induced cytotoxicity, apoptosis, γH2AX or cell transformation.


Asunto(s)
Aluminio/toxicidad , Daño del ADN , Nanopartículas del Metal/toxicidad , Cloruro de Aluminio/toxicidad , Óxido de Aluminio/toxicidad , Células CACO-2 , Línea Celular , Ensayo Cometa , Hepatocitos/efectos de los fármacos , Humanos , Intestinos/efectos de los fármacos , Pruebas de Micronúcleos , Estrés Oxidativo
4.
Nanotoxicology ; 14(6): 807-826, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32449868

RESUMEN

Nanomaterials (NMs) can be produced in plenty of variants posing several challenges for NM hazard and risk assessment. Metabolomic profiling of NM-treated cells and tissues allows for insights into underlying Mode-of-Action (MoA) and offers several advantages in this context. It supports the description of Adverse Outcome Pathways (AOPs) and, therefore, tailored AOP-based hazard testing strategies. Moreover, it bears great potential for biomarker discovery supporting toxicity prediction. Here, we applied metabolomics profiling to cells treated with four well-selected SiO2 variants, differing in structure, size and surface charge. TiO2 NM-105 served as a benchmark. Responses were studied in vitro in rat lung epithelial cells (RLE-6TN) and alveolar macrophages (NR8383) and compared to in vivo responses in rat lung tissues obtained from in vivo instillation and short-term inhalation studies (STIS). Time- and concentration-dependent changes were observed in both in vitro models but with cell-type specific responses. Overall, the levels of lipids and biogenic amines (BAs) tended to increase in epithelial cells but decreased in macrophages. Many identified metabolites like Met-SO, hydroxy-Pro and spermidine were related to oxidative stress, indicating that oxidative stress contributes to the MoA for the selected NMs. Several biomarker candidates such as Asp, Asn, Ser, Pro, spermidine, putrescine and LysoPCaC16:1 were identified in vitro and verified in vivo. In this study, we successfully applied a metabolomics workflow for in vitro and in vivo samples, which proved to be well suited to identify potential biomarkers, to gain insights into NM structure-activity relationship and into the underlying MoA.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Metaboloma/efectos de los fármacos , Nanoestructuras/toxicidad , Dióxido de Silicio/toxicidad , Animales , Biomarcadores/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Humanos , Exposición por Inhalación/efectos adversos , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Metabolómica , Nanoestructuras/química , Tamaño de la Partícula , Ratas Wistar , Dióxido de Silicio/química
5.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32074956

RESUMEN

Aluminum (Al) is extensively used for the production of different consumer products, agents, as well as pharmaceuticals. Studies that demonstrate neurotoxicity and a possible link to Alzheimer's disease trigger concern about potential health risks due to high Al intake. Al in cosmetic products raises the question whether a possible interaction between Al and retinol (vitamin A) and cholecalciferol (vitamin D3) metabolism might exist. Understanding the uptake mechanisms of ionic or elemental Al and Al nanomaterials (Al NMs) in combination with bioactive substances are important for the assessment of possible health risk associated. Therefore, we studied the uptake and distribution of Al oxide (Al2O3) and metallic Al0 NMs in the human keratinocyte cell line HaCaT. Possible alterations of the metabolic pattern upon application of the two Al species together with vitamin A or D3 were investigated. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify the cellular uptake of Al NMs.


Asunto(s)
Óxido de Aluminio/análisis , Aluminio/análisis , Colecalciferol/farmacología , Nanoestructuras/química , Vitamina A/farmacología , Aluminio/química , Aluminio/metabolismo , Óxido de Aluminio/química , Óxido de Aluminio/metabolismo , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Espectrometría de Masa de Ion Secundario
6.
Nanotoxicology ; 12(9): 992-1013, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30317887

RESUMEN

Aluminum (Al) is one of the most common elements in the earth crust and increasingly used in food, consumer products and packaging. Its hazard potential for humans is still not completely understood. Besides the metallic form, Al also exists as mineral, including the insoluble oxide, and in soluble ionic forms. Representatives of these three species, namely a metallic and an oxidic species of Al-containing nanoparticles and soluble aluminum chloride, were applied to human intestinal cell lines as models for the intestinal barrier. We characterized physicochemical particle parameters, protein corona composition, ion release and cellular uptake. Different in vitro assays were performed to determine potential effects and molecular modes of action related to the individual chemical species. For a deeper insight into signaling processes, microarray transcriptome analyses followed by bioinformatic data analysis were employed. The particulate Al species showed different solubility in biological media. Metallic Al nanoparticles released more ions than Al2O3 nanoparticles, while AlCl3 showed a mixture of dissolved and agglomerated particulate entities in biological media. The protein corona composition differed between both nanoparticle species. Cellular uptake, investigated in transwell experiments, occurred predominantly in particulate form, whereas ionic Al was not taken up by intestinal cell lines. Transcellular transport was not observed. None of the Al species showed cytotoxic effects up to 200 µg Al/mL. The transcriptome analysis indicated mainly effects on oxidative stress pathways, xenobiotic metabolism and metal homeostasis. We have shown for the first time that intestinal cellular uptake of Al occurs preferably in the particle form, while toxicological effects appear to be ion-related.


Asunto(s)
Aluminio/toxicidad , Mucosa Intestinal/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Corona de Proteínas/metabolismo , Transcriptoma/efectos de los fármacos , Aluminio/química , Aluminio/metabolismo , Apoptosis/efectos de los fármacos , Transporte Biológico , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Humanos , Mucosa Intestinal/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nanopartículas del Metal/química , Propiedades de Superficie
7.
Arch Toxicol ; 91(12): 3991-4007, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28643002

RESUMEN

Inhalation is considered a critical uptake route for NMs, demanding for sound toxicity testing using relevant test systems. This study investigates cytotoxicity and genotoxicity in EpiAirway™ 3D human bronchial models using 16 well-characterized NMs, including surface-functionalized 15 nm SiO2 (4 variants), 10 nm ZrO2 (4), and nanosilver (3), ZnO NM-110, TiO2 NM-105, BaSO4 NM-220, and two AlOOH NMs. Cytotoxicity was assessed by LDH and ATP assays and genotoxicity by the alkaline comet assay. For 9 NMs, uptake was investigated using inductively coupled plasma-mass spectrometry (ICP-MS). Most NMs were neither cytotoxic nor genotoxic in vitro. ZnO displayed a dose-dependent genotoxicity between 10 and 25 µg/cm2. Ag.50.citrate was genotoxic at 50 µg/cm2. A marginal but still significant genotoxic response was observed for SiO2.unmodified, SiO2.phosphate and ZrO2.TODS at 50 µg/cm2. For all NMs for which uptake in the 3D models could be assessed, the amount taken up was below 5% of the applied mass doses and was furthermore dose dependent. For in vivo comparison, published in vivo genotoxicity data were used and in addition, at the beginning of this study, two NMs were randomly selected for short-term (5-day) rat inhalation studies with subsequent comet and micronucleus assays in lung and bone marrow cells, respectively, i.e., ZrO2.acrylate and SiO2.amino. Both substances were not genotoxic neither in vivo nor in vitro. EpiAirway™ 3D models appear useful for NM in vitro testing. Using 16 different NMs, this study confirms that genotoxicity is mainly determined by chemical composition of the core material.


Asunto(s)
Bronquios/efectos de los fármacos , Nanoestructuras/toxicidad , Dióxido de Silicio/toxicidad , Plata/toxicidad , Circonio/toxicidad , Adenosina Trifosfato/metabolismo , Administración por Inhalación , Animales , Bronquios/citología , Técnicas de Cultivo de Célula , Ensayo Cometa , Humanos , L-Lactato Deshidrogenasa/metabolismo , Masculino , Pruebas de Micronúcleos , Pruebas de Mutagenicidad/métodos , Nanoestructuras/química , Ratas Wistar , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA