Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 16(1): 2297831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165179

RESUMEN

The prevalence of inflammatory bowel disease (IBD) is rising globally; however, its etiology is still not fully understood. Patient genetics, immune system, and intestinal microbiota are considered critical factors contributing to IBD. Preclinical animal models are crucial to better understand the importance of individual contributing factors. Among these, the dextran sodium sulfate (DSS) colitis model is the most widely used. DSS treatment induces gut inflammation and dysbiosis. However, its exact mode of action remains unclear. To determine whether DSS treatment induces pathogenic changes in the microbiota, we investigated the microbiota-modulating effects of DSS on murine microbiota in vitro. For this purpose, we cultured murine microbiota from the colon in six replicate continuous bioreactors. Three bioreactors were supplemented with 1% DSS and compared with the remaining PBS-treated control bioreactors by means of microbiota taxonomy and functionality. Using metaproteomics, we did not identify significant changes in microbial taxonomy, either at the phylum or genus levels. No differences in the metabolic pathways were observed. Furthermore, the global metabolome and targeted short-chain fatty acid (SCFA) quantification did not reveal any DSS-related changes. DSS had negligible effects on microbial functionality and taxonomy in vitro in the absence of the host environment. Our results underline that the DSS colitis mouse model is a suitable model to study host-microbiota interactions, which may help to understand how intestinal inflammation modulates the microbiota at the taxonomic and functional levels.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Ratones , Animales , Colon/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Inflamación/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Microorganisms ; 8(9)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961728

RESUMEN

Bisphenol S (BPS) is an industrial chemical used in the process of polymerization of polycarbonate plastics and epoxy resins and thus can be found in various plastic products and thermal papers. The microbiota disrupting effect of BPS on the community structure of the microbiome has already been reported, but little is known on how BPS affects bacterial activity and function. To analyze these effects, we cultivated the simplified human intestinal microbiota (SIHUMIx) in bioreactors at a concentration of 45 µM BPS. By determining biomass, growth of SIHUMIx was followed but no differences during BPS exposure were observed. To validate if the membrane composition was affected, fatty acid methyl esters (FAMEs) profiles were compared. Changes in the individual membrane fatty acid composition could not been described; however, the saturation level of the membranes slightly increased during BPS exposure. By applying targeted metabolomics to quantify short-chain fatty acids (SCFA), it was shown that the activity of SIHUMIx was unaffected. Metaproteomics revealed temporal effect on the community structure and function, showing that BPS has minor effects on the structure or functionality of SIHUMIx.

3.
Sci Total Environ ; 745: 140932, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32731069

RESUMEN

Glyphosate is the world's most widely used herbicide, and its potential side effects on the intestinal microbiota of various animals, from honeybees to livestock and humans, are currently under discussion. Pigs are among the most abundant livestock animals worldwide and an impact of glyphosate on their intestinal microbiota function can have serious consequences on their health, not to mention the economic effects. Recent studies that addressed microbiota-disrupting effects focused on microbial taxonomy but lacked functional information. Therefore, we chose an experimental design with a short incubation time in which effects on the community structure are not expected, but functional effects can be detected. We cultivated intestinal microbiota derived from pig colon in chemostats and investigated the acute effect of 228 mg/d glyphosate acid equivalents from Roundup® LB plus, a frequently applied glyphosate formulation. The applied glyphosate concentration resembles a worst-case scenario for an 8-9 week-old pig and relates to the maximum residue levels of glyphosate on animal fodder. The effects were determined on the functional level by metaproteomics, targeted and untargeted meta-metabolomics, while variations in community structure were analyzed by 16S rRNA gene profiling and on the single cell level by microbiota flow cytometry. Roundup® LB plus did not affect the community taxonomy or the enzymatic repertoire of the cultivated microbiota in general or on the expression of the glyphosate target enzyme 5-enolpyruvylshikimate-3-phosphate synthase in detail. On the functional level, targeted metabolite analysis of short chain fatty acids (SCFAs), free amino acids and bile acids did not reveal significant changes, whereas untargeted meta-metabolomics did identify some effects on the functional level. This multi-omics approach provides evidence for subtle metabolic effects of Roundup® LB plus under the conditions applied.


Asunto(s)
Microbioma Gastrointestinal , Herbicidas/toxicidad , Animales , Glicina/análogos & derivados , Glicina/toxicidad , Humanos , Metaboloma , ARN Ribosómico 16S/genética , Porcinos , Glifosato
4.
Front Microbiol ; 11: 755, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390989

RESUMEN

Recent research has demonstrated that MAIT cells are activated by individual bacterial or yeasts species that possess the riboflavin biosynthesis pathway. However, little is known about the MAIT cell activating potential of microbial communities and the contribution of individual community members. Here, we analyze the MAIT cell activating potential of a human intestinal model community (SIHUMIx) as well as intestinal microbiota after bioreactor cultivation. We determined the contribution of individual SIHUMIx community members to the MAIT cell activating potential and investigated whether microbial stress can influence their MAIT cell activating potential. The MAIT cell activating potential of SIHUMIx was directly related to the relative species abundances in the community. We therefore suggest an additive relationship between the species abundances and their MAIT cell activating potential. In diverse microbial communities, we found that a low MAIT cell activating potential was associated with high microbial diversity and a high level of riboflavin demand and vice versa. We suggest that microbial diversity might affect MAIT cell activation via riboflavin utilization within the community. Microbial acid stress significantly reduced the MAIT cell activating potential of SIHUMIx by impairing riboflavin availability through increasing the riboflavin demand. We show that MAIT cells can perceive microbial stress due to changes in riboflavin utilization and that riboflavin availability might also play a central role for the MAIT cell activating potential of diverse microbiota.

5.
Rapid Commun Mass Spectrom ; 34(7): e8668, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31961458

RESUMEN

RATIONALE: Glyphosate is one of the most widely used herbicides and it is suspected to affect the intestinal microbiota through inhibition of aromatic amino acid synthesis via the shikimate pathway. In vitro microbiome bioreactors are increasingly used as model systems to investigate effects on intestinal microbiota and consequently methods for the quantitation of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in microbiome model systems are required. METHODS: An optimized protocol enables the analysis of both glyphosate and AMPA by simple extraction with methanol:acetonitrile:water (2:3:1) without further enrichment steps. Glyphosate and AMPA are separated by liquid chromatography on an amide column and identified and quantified with a targeted tandem mass spectrometry method using a QTRAP 5500 system (AB Sciex). RESULTS: Our method has a limit of detection (LOD) in extracted water samples of <2 ng/mL for both glyphosate and AMPA. In complex intestinal medium, the LOD is 2 and 5 ng/mL for glyphosate and AMPA, respectively. These LODs allow for measurement at exposure-relevant concentrations. Glyphosate levels in a bioreactor model of porcine colon were determined and consequently it was verified whether AMPA was produced by porcine gut microbiota. CONCLUSIONS: The method presented here allows quantitation of glyphosate and AMPA in complex bioreactor fluids and thus enables studies of the impact of glyphosate and its metabolism on intestinal microbiota. In addition, the extraction protocol is compatible with an untargeted metabolomics analysis, thus allowing one to look for other perturbations caused by glyphosate in the same sample.


Asunto(s)
Colon/microbiología , Microbioma Gastrointestinal , Glicina/análogos & derivados , Herbicidas/análisis , Compuestos Organofosforados/análisis , Animales , Reactores Biológicos , Microbioma Gastrointestinal/efectos de los fármacos , Glicina/análisis , Glicina/metabolismo , Herbicidas/metabolismo , Metabolómica , Compuestos Organofosforados/metabolismo , Porcinos , Espectrometría de Masas en Tándem , Glifosato
6.
Gut Microbes ; 11(4): 1116-1129, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31918607

RESUMEN

Diverse intestinal microbiota is frequently used in in vitro bioreactor models to study the effects of diet, chemical contaminations, or medication. However, the reproducible cultivation of fecal microbiota is challenging and the resultant communities behave highly dynamic. To approach the issue of reproducibility in in vitro models, we established an intestinal microbiota model community of reduced complexity, SIHUMIx, as a valuable model for in vitro use. The development of the SIHUMIx community was monitored over time with methods covering the cellular and the molecular level. We used microbial flow cytometry, intact protein profiling and terminal restriction fragment length polymorphism analysis to assess community structure. In parallel, we analyzed the functional level by targeted analysis of short-chain fatty acids and untargeted metabolomics. The stability properties constancy, resistance, and resilience were approached both on the structural and functional level of the community. We show that the SIHUMIx community is highly reproducible and constant since day 5 of cultivation. Furthermore, SIHUMIx has the ability to resist and recover from a pulsed perturbation, with changes in community structure recovered earlier than functional changes. Since community structure and function changed divergently, both levels need to be monitored at the same time to gain a full overview of the community development. All five methods are highly suitable to follow the community dynamics of SIHUMIx and indicated stability on day five. This makes SIHUMIx a suitable in vitro model to investigate the effects of e.g. medical, chemical, or dietary interventions.


Asunto(s)
Bacterias/crecimiento & desarrollo , Reactores Biológicos , Microbioma Gastrointestinal , Intestinos/microbiología , Bacterias/metabolismo , Ácidos Grasos Volátiles/análisis , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Humanos , Metabolómica , Reproducibilidad de los Resultados
7.
J Immunotoxicol ; 17(1): 10-20, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31909636

RESUMEN

Mucosal-associated invariant T-cells (MAIT) can react to metabolites of the vitamins riboflavin and folate which are produced by the human gut microbiota. Since several studies showed that the pesticide chlorpyrifos (CPF) and glyphosate (GLP) can impair the gut microbiota, the present study was undertaken to investigate the impact of CPF and GLP treatment on the metabolism of gut microbiota and the resulting bacteria-mediated modulation of MAIT cell activity. Here, Bifidobacterium adolescentis (B. adolescentis), Lactobacillus reuteri (L. reuteri), and Escherichia coli (E. coli) were treated with CPF (50-200 µM) or GLP (75-300 mg/L) and then used in MAIT cell stimulation assays as well as in vitamin and proteome analyses. All three bacteria were nonpathogenic and chosen as representatives of a healthy human gut microflora. The results showed that E. coli activated MAIT cells whereas B. adolescentis and L. reuteri inhibited MAIT cell activation. CPF treatment significantly increased E. coli-mediated MAIT cell activation. Treatment of B. adolescentis and L. reuteri with CPF and GLP weakened the inhibition of MAIT cell activation. Riboflavin and folate production by the test bacteria was influenced by CPF treatment, whereas GLP had only minor effects. Proteomic analysis of CPF-treated E. coli revealed changes in the riboflavin and folate biosynthesis pathways. The findings here suggest that the metabolism of the analyzed bacteria could be altered by exposure to CPF and GLP, leading to an increased pro-inflammatory immune response.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Herbicidas/toxicidad , Insecticidas/toxicidad , Activación de Linfocitos/efectos de los fármacos , Células T Invariantes Asociadas a Mucosa/inmunología , Bifidobacterium adolescentis/efectos de los fármacos , Bifidobacterium adolescentis/inmunología , Bifidobacterium adolescentis/metabolismo , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/inmunología , Capa Leucocitaria de la Sangre/citología , Cloropirifos/toxicidad , Escherichia coli/efectos de los fármacos , Escherichia coli/inmunología , Escherichia coli/metabolismo , Ácido Fólico/análisis , Ácido Fólico/biosíntesis , Microbioma Gastrointestinal/inmunología , Glicina/análogos & derivados , Glicina/toxicidad , Voluntarios Sanos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/inmunología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Limosilactobacillus reuteri/efectos de los fármacos , Limosilactobacillus reuteri/inmunología , Limosilactobacillus reuteri/metabolismo , Activación de Linfocitos/inmunología , Proteómica , Riboflavina/análisis , Riboflavina/biosíntesis , Glifosato
8.
Microorganisms ; 7(12)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816881

RESUMEN

Many functions in host-microbiota interactions are potentially influenced by intestinal transit times, but little is known about the effects of altered transition times on the composition and functionality of gut microbiota. To analyze these effects, we cultivated the model community SIHUMIx in bioreactors in order to determine the effects of varying transit times (TT) on the community structure and function. After five days of continuous cultivation, we investigated the influence of different medium TT of 12 h, 24 h, and 48 h. For profiling the microbial community, we applied flow cytometric fingerprinting and revealed changes in the community structure of SIHUMIx during the change of TT, which were not associated with changes in species abundances. For pinpointing metabolic alterations, we applied metaproteomics and metabolomics and found, along with shortening the TT, a slight decrease in glycan biosynthesis, carbohydrate, and amino acid metabolism and, furthermore, a reduction in butyrate, methyl butyrate, isobutyrate, valerate, and isovalerate concentrations. Specifically, B. thetaiotaomicron was identified to be affected in terms of butyrate metabolism. However, communities could recover to the original state afterward. This study shows that SIHUMIx showed high structural stability when TT changed-even four-fold. Resistance values remained high, which suggests that TTs did not interfere with the structure of the community to a certain degree.

9.
J Pept Sci ; 19(10): 619-28, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23893605

RESUMEN

Equine sarcoid is a topically accessible model for the evaluation of anticancer peptides acting by physical membrane disruption avoiding the complexity of a systemic application. We aim at evaluating and improving natural peptides for host defence as lead structures, where we focus on the cationic and amphipathic peptide NK-2. Cytotoxicity tests, fluorescence microscopy and a chip-based biosensor, which enabled real-time monitoring of cell metabolism, were applied. Cancer cell killing was dynamic with an initial phase of increased cellular respiration, followed by membrane destruction. NK-2 was substantially improved and shortened. Novel peptides exhibited a fivefold improved activity against sarcoid cells, while haemolysis remained almost unaltered. Similar Zeta potential and similar amount of surface phosphatidylserine of sarcoid and normal skin cells are responsible for a lack of selectivity between these two cell types.


Asunto(s)
Caballos/virología , Microscopía Fluorescente , Péptidos/química , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Técnicas Biosensibles , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Hemólisis , Humanos , Péptidos/síntesis química , Péptidos/farmacología , Fosfatidilserinas/química , Neoplasias Cutáneas/metabolismo
10.
Exp Cell Res ; 319(7): 1013-27, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23298945

RESUMEN

Most chemotherapeutics harm normal cells causing severe side effects and induce the development of resistance in cancer cells. Antimicrobial peptides (AMPs), recognized as anti-cancer agents, may overcome these limitations. The most studied mechanism underlying multi-drug resistance (MDR) is the over-expression of cell membrane transporter P-glycoprotein (P-gp), which extrudes a variety of hydrophobic drugs. Additionally, P-gp contributes to cell membrane composition and increases the net negative charge on cell surface. We postulated that NK-lysin derived cationic peptide NK-2 might discriminate and preferentially eliminate P-gp over-expressing cancer cells. To test this hypothesis, we employed MDR non-small cell lung carcinoma (NCI-H460/R) and colorectal carcinoma (DLD1-TxR) cell lines with high P-gp expression. MDR cancer cells that survived NK-2 treatment had decreased P-gp expression and were more susceptible to doxorubicin. We found that NK-2 more readily eliminated P-gp high-expressing cells. Acting in 'carpet-like' manner NK-2 co-localized with P-gp on the MDR cancer cell membrane. The inhibition of P-gp reduced the NK-2 effect in MDR cancer cells and, vice versa, NK-2 decreased P-gp transport activity. In conclusion, NK-2 could modulate MDR in unique way, eliminating the P-gp high-expressing cells from heterogeneous cancers and making them more vulnerable to classical drug treatment.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Péptidos/farmacología , Transporte Biológico/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Proteolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...