Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(1): 186-194, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38230277

RESUMEN

In addition to crucial roles in normal human biology, peptide metabolites of the renin-angiotensin (RAS) and kallikrein-kinin systems (KKS) have been reported to be altered in COVID-19 patients. Here, we evaluate new data on RAS and KKS peptides in COVID-19 patient serum obtained from a recently developed, fully validated, and optimized stable isotope labeling LC-MS peptide assay. We found that the RAS peptides angiotensin (ANG) 1, 2, 1-5, and 1-7 were downregulated compared to COVID-free surrogate controls, while the KKS peptides Brad, Brad 1-8, and Brad 1-7 were upregulated. This paper focuses on uncovering the possible diagnostic value of these peptides using receiver operating characteristic (ROC) analyses of these data. ROC plots confirmed that all of the analyte peptides in 80 serum samples from COVID-19 patients were significantly altered from "normal" values of the control samples. The best diagnostic sensitivities and selectivities for COVID vs no COVID were found in ROC plots for Brad and Brad 1-7 (both 99% sensitivity, 100% selectivity). We then analyzed levels of all the peptides grouped according to preassigned values of the World Health Organization (WHO) COVID-19 Severity Index. ROC plots differentiated patients with a high WHO severity index from those with a low WHO severity index with moderate success, with BRAD (73% sensitivity, 79% selectivity) and Ang 1-7 (75% sensitivity, 65% selectivity) giving the best diagnostic performance. Results suggest the possible diagnostic value of these peptides as biomarkers to help identify moderate and serious COVID-19 cases at relatively early stages.

2.
Analyst ; 148(23): 5926-5934, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37850419

RESUMEN

Angiotensin and kinin metabolic pathways are reported to be altered by many diseases, including COVID-19. Monitoring levels of these peptide metabolites is important for understanding mechanisms of disease processes. In this paper, we report dimethyl labeling of amines in peptides by addition of formaldehyde to samples and deutero-formaldehyde to internal standards to generate nearly identical isotopic standards with 4 m/z units larger per amine group than the corresponding analyte. We apply this approach to rapid, multiplexed, absolute LC-MS/MS quantitation of renin angiotensin system (RAS) and kallikrein-kinin system (KKS) peptides in human blood serum. Limits of detection (LODs) were obtained in the low pg mL-1 range with 3 orders of magnitude dynamic ranges, appropriate for determinations of normal and elevated levels of the target peptides in blood serum and plasma. Accuracy is within ±15% at concentrations above the limit of quantitation, as validated by spike-recovery in serum samples. Applicability was demonstrated by measuring RAS and KKS peptides in serum from COVID-19 patients, but is extendable to any class of peptides or other small molecules bearing reactive -NH2 groups.


Asunto(s)
COVID-19 , Sistema Renina-Angiotensina , Humanos , Sistema Calicreína-Quinina , Cromatografía Liquida , Suero , COVID-19/diagnóstico , Espectrometría de Masas en Tándem , Péptidos , Formaldehído , Isótopos
3.
Anal Chem ; 94(37): 12788-12797, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36074029

RESUMEN

Parathyroid hormone-related peptide (PTHrP) is related to bone metastasis and hypercalcemia in prostate and breast cancers and should be an excellent biomarker for aggressive forms of these cancers. Current clinical detection protocols for PTHrP are immunoradiometric assay and radioimmunoassay but are not sensitive enough to detect PTHrPs at early stages. We recently evaluated a prostate cancer biomarker panel, including serum monocyte differentiation antigen (CD-14), ETS-related gene protein, pigment epithelial-derived factor, and insulin-like growth factor-1, with promise for identifying aggressive prostate cancers. This panel predicted the need for patient biopsy better than PSA alone. In the present paper, we report an ultrasensitive microfluidic assay for PTHrPs and evaluate their diagnostic value and the value of including them with our prior biomarker panel to diagnose aggressive forms of prostate cancer. The immunoarray features screen-printed carbon sensor electrodes coated with 5 nm glutathione gold nanoparticles with capture antibodies attached. PTHrPs are bound to a secondary antibody attached to a polyhorseradish peroxidase label and delivered to the sensors to provide high sensitivity when activated by H2O2 and a mediator. We obtained an unprecedented 0.3 fg mL-1 limit of detection for PTHrP bioactive moieties PTHrP 1-173 and PTHrP 1-86. We also report the first study of PTHrPs in a large serum pool to identify aggressive malignancies. In assays of 130 human patient serum samples, PTHrP levels distinguished between aggressive and indolent prostate cancers with 83-91% clinical sensitivity and 78-96% specificity. Logistic regression identified the best predictive model as a combination of PTHrP 1-86 and vascular endothelial growth factor-D. PTHrP 1-173 alone also showed a high ability to differentiate aggressive and indolent cancers.


Asunto(s)
Nanopartículas del Metal , Neoplasias de la Próstata , Biomarcadores de Tumor , Carbono , Glutatión , Oro , Humanos , Peróxido de Hidrógeno , Factor I del Crecimiento Similar a la Insulina , Masculino , Hormona Paratiroidea , Proteína Relacionada con la Hormona Paratiroidea , Peroxidasas , Próstata/metabolismo , Antígeno Prostático Específico , Neoplasias de la Próstata/diagnóstico , Factor D de Crecimiento Endotelial Vascular
4.
Anal Chem ; 88(18): 9269-75, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27558535

RESUMEN

Parathyroid hormone-related peptide (PTHrP) is recognized as the major causative agent of humoral hypercalcemia of malignancy (HHM). The paraneoplastic PTHrP has also been implicated in tumor progression and metastasis of many human cancers. Conventional PTHrP detection methods like immunoradiometric assay (IRMA) lack the sensitivity required to measure target peptide levels prior to the development of hypercalcemia. In general, sensitive, multiplexed peptide measurement by immunoassay represents challenges that we address in this paper. We describe here the first ultrasensitive multiplexed peptide assay to measure intact PTHrP 1-173 as well as circulating N-terminal and C-terminal peptide fragments. This versatile approach should apply to almost any collection of peptides that are long enough to present binding sites for two antibodies. To target PTHrP, we employed a microfluidic immunoarray featuring a chamber for online capture of the peptides from serum onto magnetic beads decorated with massive numbers of peptide-specific antibodies and enzyme labels. Magnetic bead-peptide conjugates were then washed and sent to a detection chamber housing an antibody-modified 8-electrode array fabricated by inkjet printing of gold nanoparticles. Limits of detection (LODs) of 150 aM (∼1000-fold lower than IRMA) in 5 µL of serum were achieved for simultaneous detection of PTHrP isoforms and peptide fragments in 30 min. Good correlation for patient samples was found with IRMA (n = 57); r(2) = 0.99 assaying PTHrP 1-86 equiv fragments. Analysis by a receiver operating characteristic (ROC) plot gave an area under the curve of 0.96, 80-83% clinical sensitivity, and 96-100% clinical specificity. Results suggest that PTHrP1-173 isoform and its short C-terminal fragments are the predominant circulating forms of PTHrP. This new ultrasensitive, multiplexed assay for PTHrP and fragments is promising for clinical diagnosis, prognosis, and therapeutic monitoring from early to advanced stage cancer patients and to examine underlying mechanisms of PTHrP overproduction.


Asunto(s)
Inmunoensayo/instrumentación , Neoplasias/sangre , Proteína Relacionada con la Hormona Paratiroidea/sangre , Análisis por Matrices de Proteínas/instrumentación , Anticuerpos Inmovilizados/química , Diseño de Equipo , Humanos , Límite de Detección , Neoplasias/diagnóstico , Proteína Relacionada con la Hormona Paratiroidea/análisis , Isoformas de Proteínas/análisis , Isoformas de Proteínas/sangre
5.
Am J Cancer Res ; 3(5): 500-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24224127

RESUMEN

Triple-negative breast cancers (TNBCs) are heterogeneous cancers that present tumors without the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Because of the absence of these receptors, there are currently no known specific molecular targets for treatment, and although TNBC tumors are chemosensitive, prognosis is poor because this type of cancer relapses more frequently and more aggressively than hormone receptor-positive cancers. The mechanisms by which TNBCs escape control by chemotherapy are not clear, and it is crucial to identify novel molecular drivers that can be targeted in order to develop more efficient therapeutic approaches. We recently highlighted a pleiotropic role for parathyroid hormone-related protein (PTHrP) in all stages of breast cancer, and used our neutralizing anti-PTHrP monoclonal antibody (mAb M158) to efficiently inhibit progression and metastasis of human breast cancer xenografts in athymic mice. In the present study, we present evidence for a strong in vitro anti-proliferative effect of our blocking anti-PTHrP mAb M158 as a single agent on TNBC lines of various subtypes that are known to express PTHrP (MDA-MB-231, BT-549, MDA-MB-435). The same mAb is inactive in a TNBC line without detectable PTHrP expression (MDA-MB-468). In in vitro combination studies, the mAb enhances the effect of the chemotherapeutic drugs taxol and doxorubicin in PTHrP-positive TNBC cells in an additive manner. When combined with the bisphosphonate zoledronate, M158 can act in additive or antagonistic fashion in vitro depending on the cell line. Our observations identify PTHrP as a novel target against TNBC cell proliferation, and suggest that combination therapies that include an anti-PTHrP approach might increase treatment efficacy in patients with PTHrP-positive TNBC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...