Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Int J Mol Sci ; 24(17)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37686374

The demands of deep space pose a health risk to the central nervous system that has long been a concern when sending humans to space. While little is known about how spaceflight affects transcription spatially in the brain, a greater understanding of this process has the potential to aid strategies that mitigate the effects of spaceflight on the brain. Therefore, we performed GeoMx Digital Spatial Profiling of mouse brains subjected to either spaceflight or grounded controls. Four brain regions were selected: Cortex, Frontal Cortex, Corunu Ammonis I, and Dentate Gyrus. Antioxidants have emerged as a potential means of attenuating the effects of spaceflight, so we treated a subset of the mice with a superoxide dismutase mimic, MnTnBuOE-2-PyP 5+ (BuOE). Our analysis revealed hundreds of differentially expressed genes due to spaceflight in each of the four brain regions. Both common and region-specific transcriptomic responses were observed. Metabolic pathways and pathways sensitive to oxidative stress were enriched in the four brain regions due to spaceflight. These findings enhance our understanding of brain regional variation in susceptibility to spaceflight conditions. BuOE reduced the transcriptomic effects of spaceflight at a large number of genes, suggesting that this compound may attenuate oxidative stress-induced brain damage caused by the spaceflight environment.


Space Flight , Transcriptome , Humans , Animals , Mice , Antioxidants/pharmacology , Gene Expression Profiling , Brain
2.
Cells ; 12(16)2023 08 11.
Article En | MEDLINE | ID: mdl-37626856

Patients with advanced prostate cancer (PCa) invariably develop resistance to anti-androgen therapy and taxane-based chemotherapy. Glucocorticoid receptor (GR) has been implicated in PCa therapy resistance; however, the mechanisms underlying GR-mediated chemoresistance remain unclear. Lens epithelium-derived growth factor p75 (LEDGF/p75, also known as PSIP1 and DFS70) is a glucocorticoid-induced transcription co-activator implicated in cancer chemoresistance. We investigated the contribution of the GR-LEDGF/p75 axis to docetaxel (DTX)-resistance in PCa cells. GR silencing in DTX-sensitive and -resistant PCa cells decreased LEDGF/p75 expression, and GR upregulation in enzalutamide-resistant cells correlated with increased LEDGF/p75 expression. ChIP-sequencing revealed GR binding sites in the LEDGF/p75 promoter. STRING protein-protein interaction analysis indicated that GR and LEDGF/p75 belong to the same transcriptional network, and immunochemical studies demonstrated their co-immunoprecipitation and co-localization in DTX-resistant cells. The GR modulators exicorilant and relacorilant increased the sensitivity of chemoresistant PCa cells to DTX-induced cell death, and this effect was more pronounced upon LEDGF/p75 silencing. RNA-sequencing of DTX-resistant cells with GR or LEDGF/p75 knockdown revealed a transcriptomic overlap targeting signaling pathways associated with cell survival and proliferation, cancer, and therapy resistance. These studies implicate the GR-LEDGF/p75 axis in PCa therapy resistance and provide a pre-clinical rationale for developing novel therapeutic strategies for advanced PCa.


Prostatic Neoplasms , Receptors, Glucocorticoid , Male , Humans , Docetaxel/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Intercellular Signaling Peptides and Proteins , Glucocorticoids
3.
BMC Genomics ; 24(1): 437, 2023 Aug 03.
Article En | MEDLINE | ID: mdl-37537522

BACKGROUND: CD-1 is an outbred mouse stock that is frequently used in toxicology, pharmacology, and fundamental biomedical research. Although inbred strains are typically better suited for such studies due to minimal genetic variability, outbred stocks confer practical advantages over inbred strains, such as improved breeding performance and low cost. Knowledge of the full genetic variability of CD-1 would make it more useful in toxicology, pharmacology, and fundamental biomedical research. RESULTS: We performed deep genomic DNA sequencing of CD-1 mice and used the data to identify genome-wide SNPs, indels, and germline transposable elements relative to the mm10 reference genome. We used multiple genome-wide sequencing data types and previously published CD-1 SNPs to validate our called variants. We used the called variants to construct a strain-specific CD-1 reference genome, which we show can improve mappability and reduce experimental biases from genome-wide sequencing data derived from CD-1 mice. Based on previously published ChIP-seq and ATAC-seq data, we find evidence that genetic variation between CD-1 mice can lead to alterations in transcription factor binding. We also identified a number of variants in the coding region of genes which could have effects on translation of genes. CONCLUSIONS: We have identified millions of previously unidentified CD-1 variants with the potential to confound studies involving CD-1. We used the identified variants to construct a CD-1-specific reference genome, which can improve accuracy and reduce bias when aligning genomics data derived from CD-1 mice.


Genome , Genomics , Mice , Animals , Chromosome Mapping , Protein Binding , Polymorphism, Single Nucleotide
4.
Elife ; 122023 07 17.
Article En | MEDLINE | ID: mdl-37458420

The Drosophila polyadenosine RNA binding protein Nab2, which is orthologous to a human protein lost in a form of inherited intellectual disability, controls adult locomotion, axon projection, dendritic arborization, and memory through a largely undefined set of target RNAs. Here, we show a specific role for Nab2 in regulating splicing of ~150 exons/introns in the head transcriptome and focus on retention of a male-specific exon in the sex determination factor Sex-lethal (Sxl) that is enriched in female neurons. Previous studies have revealed that this splicing event is regulated in females by N6-methyladenosine (m6A) modification by the Mettl3 complex. At a molecular level, Nab2 associates with Sxl pre-mRNA in neurons and limits Sxl m6A methylation at specific sites. In parallel, reducing expression of the Mettl3, Mettl3 complex components, or the m6A reader Ythdc1 rescues mutant phenotypes in Nab2 flies. Overall, these data identify Nab2 as an inhibitor of m6A methylation and imply significant overlap between Nab2 and Mettl3 regulated RNAs in neuronal tissue.


Drosophila Proteins , Drosophila melanogaster , Animals , Humans , Female , Male , Methylation , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Alternative Splicing , RNA Splicing , Drosophila Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Drosophila/genetics , Neurons/metabolism
5.
Cell Biosci ; 13(1): 58, 2023 Mar 17.
Article En | MEDLINE | ID: mdl-36932456

BACKGROUND: Fetal hypoxia causes vital, systemic, developmental malformations in the fetus, particularly in the brain, and increases the risk of diseases in later life. We previously demonstrated that fetal hypoxia exposure increases the susceptibility of the neonatal brain to hypoxic-ischemic insult. Herein, we investigate the effect of fetal hypoxia on programming of cell-specific transcriptomes in the brain of neonatal rats. RESULTS: We obtained RNA sequencing (RNA-seq) data from neurons, microglia, oligodendrocytes, A2B5+ oligodendrocyte precursor cells, and astrocytes from male and female neonatal rats subjected either to fetal hypoxia or control conditions. Substantial transcriptomic responses to fetal hypoxia occurred in neurons, microglia, oligodendrocytes, and A2B5+ cells. Not only were the transcriptomic responses unique to each cell type, but they also occurred with a great deal of sexual dimorphism. We validated differential expression of several genes related to inflammation and cell death by Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). Pathway and transcription factor motif analyses suggested that the NF-kappa B (NFκB) signaling pathway was enriched in the neonatal male brain due to fetal hypoxia, and we verified this result by transcription factor assay of NFκB-p65 in whole brain. CONCLUSIONS: Our study reveals a significant impact of fetal hypoxia on the transcriptomes of neonatal brains in a cell-specific and sex-dependent manner, and provides mechanistic insights that may help explain the development of hypoxic-ischemic sensitive phenotypes in the neonatal brain.

6.
RNA ; 27(9): 1046-1067, 2021 09.
Article En | MEDLINE | ID: mdl-34162742

RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene EXOSC2 cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic EXOSC2 missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous S. cerevisiae gene RRP4 The resulting rrp4 mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in rrp4-G226D cells that model EXOSC2 p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in EXOSC2 impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.


Exoribonucleases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Mutation, Missense , RNA, Fungal/genetics , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Amino Acid Substitution , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Dwarfism/enzymology , Dwarfism/genetics , Dwarfism/pathology , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/metabolism , Facies , Gene Expression , Glycine/chemistry , Glycine/metabolism , Hearing Loss/enzymology , Hearing Loss/genetics , Hearing Loss/pathology , Humans , Models, Biological , Models, Molecular , Protein Conformation , RNA, Fungal/chemistry , RNA, Fungal/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Retinitis Pigmentosa/enzymology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Syndrome
7.
PLoS Genet ; 16(7): e1008901, 2020 07.
Article En | MEDLINE | ID: mdl-32645003

The RNA exosome is an evolutionarily-conserved ribonuclease complex critically important for precise processing and/or complete degradation of a variety of cellular RNAs. The recent discovery that mutations in genes encoding structural RNA exosome subunits cause tissue-specific diseases makes defining the role of this complex within specific tissues critically important. Mutations in the RNA exosome component 3 (EXOSC3) gene cause Pontocerebellar Hypoplasia Type 1b (PCH1b), an autosomal recessive neurologic disorder. The majority of disease-linked mutations are missense mutations that alter evolutionarily-conserved regions of EXOSC3. The tissue-specific defects caused by these amino acid changes in EXOSC3 are challenging to understand based on current models of RNA exosome function with only limited analysis of the complex in any multicellular model in vivo. The goal of this study is to provide insight into how mutations in EXOSC3 impact the function of the RNA exosome. To assess the tissue-specific roles and requirements for the Drosophila ortholog of EXOSC3 termed Rrp40, we utilized tissue-specific RNAi drivers. Depletion of Rrp40 in different tissues reveals a general requirement for Rrp40 in the development of many tissues including the brain, but also highlight an age-dependent requirement for Rrp40 in neurons. To assess the functional consequences of the specific amino acid substitutions in EXOSC3 that cause PCH1b, we used CRISPR/Cas9 gene editing technology to generate flies that model this RNA exosome-linked disease. These flies show reduced viability; however, the surviving animals exhibit a spectrum of behavioral and morphological phenotypes. RNA-seq analysis of these Drosophila Rrp40 mutants reveals increases in the steady-state levels of specific mRNAs and ncRNAs, some of which are central to neuronal function. In particular, Arc1 mRNA, which encodes a key regulator of synaptic plasticity, is increased in the Drosophila Rrp40 mutants. Taken together, this study defines a requirement for the RNA exosome in specific tissues/cell types and provides insight into how defects in RNA exosome function caused by specific amino acid substitutions that occur in PCH1b can contribute to neuronal dysfunction.


Cerebellar Diseases/genetics , Cytoskeletal Proteins/genetics , Drosophila melanogaster/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Nerve Tissue Proteins/genetics , Neurons/metabolism , RNA-Binding Proteins/genetics , Amino Acid Substitution/genetics , Animals , CRISPR-Cas Systems/genetics , Cerebellar Diseases/pathology , Cerebellum/metabolism , Cerebellum/pathology , Disease Models, Animal , Exosomes/genetics , Humans , Mutation/genetics , Neurons/pathology , RNA/genetics
8.
Genome Biol ; 21(1): 118, 2020 05 18.
Article En | MEDLINE | ID: mdl-32423419

BACKGROUND: A growing body of evidence suggests that certain epiphenotypes can be passed across generations via both the male and female germlines of mammals. These observations have been difficult to explain owing to a global loss of the majority of known epigenetic marks present in parental chromosomes during primordial germ cell development and after fertilization. RESULTS: By integrating previously published BS-seq, DNase-seq, ATAC-seq, and RNA-seq data collected during multiple stages of primordial germ cell and pre-implantation development, we find that the methylation status of the majority of CpGs genome-wide is restored after global de-methylation, despite the fact that global CpG methylation drops to 10% in primordial germ cells and 20% in the inner cell mass of the blastocyst. We estimate the proportion of such CpGs with preserved methylation status to be 78%. Further, we find that CpGs at sites bound by transcription factors during the global re-methylation phases of germline and embryonic development remain hypomethylated across all developmental stages observed. On the other hand, CpGs at sites not bound by transcription factors during the global re-methylation phase have high methylation levels prior to global de-methylation, become de-methylated during global de-methylation, and then become re-methylated. CONCLUSIONS: The results suggest that transcription factors can act as carriers of epigenetic information during germ cell and pre-implantation development by ensuring that the methylation status of CpGs is maintained. These findings provide the basis for a mechanistic description of trans-generational inheritance of epigenetic information in mammals.


DNA Methylation , Embryo, Mammalian/metabolism , Epigenesis, Genetic , Germ Cells/metabolism , Inheritance Patterns , Transcription Factors/metabolism , Animals , Female , Humans , Male , Mice
9.
Epigenetics Chromatin ; 12(1): 67, 2019 11 13.
Article En | MEDLINE | ID: mdl-31722751

BACKGROUND: Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and significantly contribute to neuronal dysfunction and pathogenesis, the alterations in the transcriptional and epigenetic profiles in HD astrocytes have yet to be characterized. Here, we examine global transcription and chromatin accessibility dynamics during in vitro astrocyte differentiation in a transgenic non-human primate model of HD. RESULTS: We found global changes in accessibility and transcription across different stages of HD pluripotent stem cell differentiation, with distinct trends first observed in neural progenitor cells (NPCs), once cells have committed to a neural lineage. Transcription of p53 signaling and cell cycle pathway genes was highly impacted during differentiation, with depletion in HD NPCs and upregulation in HD astrocytes. E2F target genes also displayed this inverse expression pattern, and strong associations between E2F target gene expression and accessibility at nearby putative enhancers were observed. CONCLUSIONS: The results suggest that chromatin accessibility and transcription are altered throughout in vitro HD astrocyte differentiation and provide evidence that E2F dysregulation contributes to aberrant cell-cycle re-entry and apoptosis throughout the progression from NPCs to astrocytes.


Astrocytes/metabolism , Cell Differentiation , Chromatin/metabolism , Huntington Disease/pathology , Pluripotent Stem Cells/metabolism , Animals , Astrocytes/cytology , Chromatin Assembly and Disassembly , Disease Models, Animal , E2F Transcription Factors/metabolism , Gene Ontology , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Macaca mulatta , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Signal Transduction , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Cell Rep ; 28(10): 2715-2727.e5, 2019 09 03.
Article En | MEDLINE | ID: mdl-31484080

Evidence suggests that Polycomb (Pc) is present at chromatin loop anchors in Drosophila. Pc is recruited to DNA through interactions with the GAGA binding factors GAF and Pipsqueak (Psq). Using HiChIP in Drosophila cells, we find that the psq gene, which has diverse roles in development and tumorigenesis, encodes distinct isoforms with unanticipated roles in genome 3D architecture. The BR-C, ttk, and bab domain (BTB)-containing Psq isoform (PsqL) colocalizes genome-wide with known architectural proteins. Conversely, Psq lacking the BTB domain (PsqS) is consistently found at Pc loop anchors and at active enhancers, including those that respond to the hormone ecdysone. After stimulation by this hormone, chromatin 3D organization is altered to connect promoters and ecdysone-responsive enhancers bound by PsqS. Our findings link Psq variants lacking the BTB domain to Pc-bound active enhancers, thus shedding light into their molecular function in chromatin changes underlying the response to hormone stimulus.


Chromatin/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Ecdysone/pharmacology , Enhancer Elements, Genetic/genetics , Nuclear Proteins/metabolism , Polycomb Repressive Complex 1/metabolism , Amino Acid Motifs , Animals , Cell Line , Drosophila Proteins/chemistry , Drosophila melanogaster/drug effects , Nuclear Proteins/chemistry , Polycomb Repressive Complex 1/chemistry , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Domains , Protein Isoforms/metabolism
11.
Mol Cell ; 75(1): 154-171.e5, 2019 07 11.
Article En | MEDLINE | ID: mdl-31056445

The epigenetic information present in mammalian gametes and whether it is transmitted to the progeny are relatively unknown. We find that many promoters in mouse sperm are occupied by RNA polymerase II (Pol II) and Mediator. The same promoters are accessible in GV and MII oocytes and preimplantation embryos. Sperm distal ATAC-seq sites containing motifs for various transcription factors are conserved in monkeys and humans. ChIP-seq analyses confirm that Foxa1, ERα, and AR occupy distal enhancers in sperm. Accessible sperm enhancers containing H3.3 and H2A.Z are also accessible in oocytes and preimplantation embryos. Furthermore, their interactions with promoters in the gametes persist during early development. Sperm- or oocyte-specific interactions mediated by CTCF and cohesin are only present in the paternal or maternal chromosomes, respectively, in the zygote and 2-cell stages. These interactions converge in both chromosomes by the 8-cell stage. Thus, mammalian gametes contain complex patterns of 3D interactions that can be transmitted to the zygote after fertilization.


CCCTC-Binding Factor/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , Oocytes/metabolism , Spermatozoa/metabolism , Zygote/metabolism , Animals , Base Sequence , CCCTC-Binding Factor/metabolism , Chromatin/chemistry , Chromatin/metabolism , Conserved Sequence , Embryo, Mammalian , Embryonic Development/genetics , Enhancer Elements, Genetic , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Female , Gene Expression Regulation, Developmental , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Macaca mulatta , Male , Mice , Oocytes/cytology , Oocytes/growth & development , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Sequence Homology, Nucleic Acid , Spermatozoa/cytology , Spermatozoa/growth & development , Zinc Fingers/genetics , Zygote/cytology , Zygote/growth & development
12.
PLoS One ; 10(7): e0132448, 2015.
Article En | MEDLINE | ID: mdl-26207626

High-throughput sequencing, and genome-based datasets in general, are often represented as profiles centered at reference points to study the association of protein binding and other signals to particular regulatory mechanisms. Although these profiles often provide compelling evidence of these associations, they do not provide a quantitative assessment of the enrichment, which makes the comparison between signals and conditions difficult. In addition, a number of biases can confound profiles, but are rarely accounted for in the tools currently available. We present a novel computational method, ProfileSeq, for the quantitative assessment of biological profiles to provide an exact, nonparametric test that specific regions of the test profile have higher or lower signal densities than a control set. The method is applicable to high-throughput sequencing data (ChIP-Seq, GRO-Seq, CLIP-Seq, etc.) and to genome-based datasets (motifs, etc.). We validate ProfileSeq by recovering and providing a quantitative assessment of several results reported before in the literature using independent datasets. We show that input signal and mappability have confounding effects on the profile results, but that normalizing the signal by input reads can eliminate these biases while preserving the biological signal. Moreover, we apply ProfileSeq to ChIP-Seq data for transcription factors, as well as for motif and CLIP-Seq data for splicing factors. In all examples considered, the profiles were robust to biases in mappability of sequencing reads. Furthermore, analyses performed with ProfileSeq reveal a number of putative relationships between transcription factor binding to DNA and splicing factor binding to pre-mRNA, adding to the growing body of evidence relating chromatin and pre-mRNA processing. ProfileSeq provides a robust way to quantify genome-wide coordinate-based signal. Software and documentation are freely available for academic use at https://bitbucket.org/regulatorygenomicsupf/profileseq/.


Chromatin/genetics , Computational Biology/methods , Genomics/methods , RNA Precursors/genetics , Animals , Cell Line , Cells, Cultured , Chromatin/metabolism , Chromatin Immunoprecipitation , Hep G2 Cells , High-Throughput Nucleotide Sequencing , Humans , K562 Cells , MCF-7 Cells , Mice , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , Reproducibility of Results , Software
13.
Brain Behav Immun ; 26(5): 797-802, 2012 Jul.
Article En | MEDLINE | ID: mdl-22226781

Astrocytic GFAP expression increases during normal aging in many brain regions and in primary astrocyte cultures derived from aging rodent brains. As shown below, we unexpectedly found that the age-related increase of GFAP expression was suppressed in mixed glia (astrocytes+microglia). However, the age-related increase of GFAP was observed when E18 neurons were co-cultured with mixed glia. Thus, the presence of microglia can suppress the age-related increase of GFAP, in primary cultures of astrocytes. To more broadly characterize how aging and co-culture with neurons alters glial gene expression, we profiled gene expression in mixed glia from young (3 mo) and old (24 mo) male rat cerebral cortex by Affymetrix microarray (Rat230 2.0). The majority of age changes were independent of the presence of neurons. Overall, the expression of twofold more genes increased with age than decreased with age. The minority of age changes that were either suppressed or revealed by the presence of neurons may be useful to analyze glial-neuron interaction during aging. Some in vitro changes are shared with those of aging rat hippocampus in studies from the Landfield group (Rowe et al., 2007; Kadish et al., 2009).


Aging/genetics , Aging/metabolism , Cerebral Cortex/metabolism , Gene Expression/physiology , Neuroglia/metabolism , Neurons/physiology , Animals , Astrocytes/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Clusterin/biosynthesis , Coculture Techniques , Glial Fibrillary Acidic Protein/biosynthesis , In Situ Hybridization , Interleukin-6/biosynthesis , Male , Microarray Analysis , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , RNA/analysis , RNA/biosynthesis , Rats , Signal Transduction/genetics , Signal Transduction/physiology
14.
Nature ; 444(7122): 1059-62, 2006 Dec 21.
Article En | MEDLINE | ID: mdl-17183320

The theory of quantum electrodynamics (QED) predicts that beta decay of the neutron into a proton, electron and antineutrino should be accompanied by a continuous spectrum of soft photons. While this inner bremsstrahlung branch has been previously measured in nuclear beta and electron capture decay, it has never been observed in free neutron decay. Recently, the photon energy spectrum and branching ratio for neutron radiative decay have been calculated using two approaches: a standard QED framework and heavy baryon chiral perturbation theory (an effective theory of hadrons based on the symmetries of quantum chromodynamics). The QED calculation treats the nucleons as point-like, whereas the latter approach includes the effect of nucleon structure in a systematic way. Here we observe the radiative decay mode of free neutrons, measuring photons in coincidence with both the emitted electron and proton. We determined a branching ratio of (3.13 +/- 0.34) x 10(-3) (68 per cent level of confidence) in the energy region between 15 and 340 keV, where the uncertainty is dominated by systematic effects. The value is consistent with the predictions of both theoretical approaches; the characteristic energy spectrum of the radiated photons, which differs from the uncorrelated background spectrum, is also consistent with the calculated spectrum. This result may provide opportunities for more detailed investigations of the weak interaction processes involved in neutron beta decay.

...