Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Life Sci Alliance ; 6(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36446526

RESUMEN

The process of spermatogenesis-when germ cells differentiate into sperm-is tightly regulated, and misregulation in gene expression is likely to be involved in the physiopathology of male infertility. The testis is one of the most transcriptionally rich tissues; nevertheless, the specific gene expression changes occurring during spermatogenesis are not fully understood. To better understand gene expression during spermatogenesis, we generated germ cell-specific whole transcriptome profiles by systematically comparing testicular transcriptomes from tissues in which spermatogenesis is arrested at successive steps of germ cell differentiation. In these comparisons, we found thousands of differentially expressed genes between successive germ cell types of infertility patients. We demonstrate our analyses' potential to identify novel highly germ cell-specific markers (TSPY4 and LUZP4 for spermatogonia; HMGB4 for round spermatids) and identified putatively misregulated genes in male infertility (RWDD2A, CCDC183, CNNM1, SERF1B). Apart from these, we found thousands of genes showing germ cell-specific isoforms (including SOX15, SPATA4, SYCP3, MKI67). Our approach and dataset can help elucidate genetic and transcriptional causes for male infertility.


Asunto(s)
Infertilidad Masculina , Semen , Humanos , Masculino , Células Germinativas , Empalme del ARN , Perfilación de la Expresión Génica , Infertilidad Masculina/genética , Proteínas
2.
Ann Am Thorac Soc ; 19(8): 1275-1284, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35202559

RESUMEN

Rationale: Primary ciliary dyskinesia (PCD) is a heterogeneous, multisystem disorder characterized by defective ciliary beating. Diagnostic guidelines of the American Thoracic Society and European Respiratory Society recommend measurement of nasal nitric oxide (nNO) for PCD diagnosis. Several studies demonstrated low nNO production rates in PCD individuals, but underlying causes remain elusive. Objectives: To determine nNO production rates in a well-characterized PCD cohort, including subgroup analyses with regard to ultrastructural and ciliary beating phenotypes. Methods: This study included 301 individuals assessed according to European Respiratory Society guidelines. Diagnostic cutoffs for nNO production rates for this study cohort and subgroups with normal and abnormal ultrastructure were determined. Diagnostic accuracy was also tested for the widely used 77 nl/min cutoff in this study cohort. The relationship between nNO production rates and ciliary beat frequencies (CBFs) was evaluated. Results: The study cohort comprised 180 individuals with definite PCD diagnosis, including 160 individuals with genetic diagnosis, 16 individuals with probable PCD diagnosis, and 105 disease controls. The 77 nl/min nNO cutoff showed a test sensitivity of 0.92 and specificity of 0.86. Test sensitivity was lower (0.85) in the subgroup of 47 PCD individuals with normal ultrastructure compared with 133 PCD individuals with abnormal ultrastructure (0.95). The optimal diagnostic cutoff for the nNO production rate for the whole study cohort was 69.8 nl/min (sensitivity, 0.92; specificity, 0.89); however, it was 107.8 nl/min (sensitivity, 0.89; specificity, 0.78) for the subgroup of PCD with normal ultrastructure. PCD individuals with normal ultrastructure compared with abnormal ultrastructure showed higher ciliary motility. Consistently, PCD individuals with higher CBFs showed higher nNO production rates. In addition, laterality defects occurred less frequently in PCD with normal ultrastructure. Conclusions: Measurements of nNO below the widely used 77 nl/min cutoff are less sensitive in detecting PCD individuals with normal ultrastructure. Our findings indicate that higher nNO production in this subgroup with a higher cutoff for the nNO production rate (107.8 nl/min) and higher residual ciliary motility is dependent on the underlying molecular PCD defect. Higher nNO production rates, higher residual CBFs, and the lower prevalence of laterality defects hamper diagnosis of PCD with normal ultrastructure. Adjusting the cutoff of nNO production rate to 107.8 nl/min might promote diagnosing PCD with normal ultrastructure.


Asunto(s)
Trastornos de la Motilidad Ciliar , Síndrome de Kartagener , Cilios/ultraestructura , Trastornos de la Motilidad Ciliar/diagnóstico , Estudios de Cohortes , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Óxido Nítrico , Fenotipo
3.
Andrology ; 10(3): 534-544, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34914193

RESUMEN

BACKGROUND: Due to the highly variable clinical phenotype, Klinefelter Syndrome is underdiagnosed. OBJECTIVE: Assessment of supervised machine learning based prediction models for identification of Klinefelter Syndrome among azoospermic patients, and comparison to expert clinical evaluation. MATERIALS AND METHODS: Retrospective patient data (karyotype, age, height, weight, testis volume, follicle-stimulating hormone, luteinizing hormone, testosterone, estradiol, prolactin, semen pH and semen volume) collected between January 2005 and June 2019 were retrieved from a patient data bank of a University Centre. Models were trained, validated and benchmarked based on different supervised machine learning algorithms. Models were then tested on an independent, prospectively acquired set of patient data (between July 2019 and July 2020). Benchmarking against physicians was performed in addition. RESULTS: Based on average performance, support vector machines and CatBoost were particularly well-suited models, with 100% sensitivity and >93% specificity on the test dataset. Compared to a group of 18 expert clinicians, the machine learning models had significantly better median sensitivity (100% vs. 87.5%, p = 0.0455) and fared comparably with regards to specificity (90% vs. 89.9%, p = 0.4795), thereby possibly improving diagnosis rate. A Klinefelter Syndrome Score Calculator based on the prediction models is available on http://klinefelter-score-calculator.uni-muenster.de. DISCUSSION: Differentiating Klinefelter Syndrome patients from azoospermic patients with normal karyotype (46,XY) is a problem that can be solved with supervised machine learning techniques, improving patient care. CONCLUSIONS: Machine learning could improve the diagnostic rate of Klinefelter Syndrome among azoospermic patients, even more for less-experienced physicians.


Asunto(s)
Azoospermia , Síndrome de Klinefelter , Azoospermia/diagnóstico , Azoospermia/genética , Humanos , Síndrome de Klinefelter/complicaciones , Síndrome de Klinefelter/diagnóstico , Aprendizaje Automático , Masculino , Salud Reproductiva , Estudios Retrospectivos
4.
Front Endocrinol (Lausanne) ; 12: 780403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992580

RESUMEN

Introduction and Objectives: About 30-75% of infertile men are diagnosed with idiopathic infertility, thereby lacking major causative factors to explain their impaired fertility status. In this study, we used a large cohort of idiopathic infertile men to determine whether subgroups could be identified by an unbiased clustering approach and whether underlying etiologic factors could be delineated. Patients and Methods: From our in-house database Androbase®, we retrospectively selected patients (from 2008 to 2018) with idiopathic male infertility (azoo- to normozoospermia) who fit the following selection criteria: FSH ≥ 1 IU/l, testosterone ≥ 8 nmol/l, ejaculate volume ≥ 1.5 ml. Patients with genetic abnormalities or partners with female factors were excluded.For the identified study population (n=2742), we used common andrologic features (somatic, semen and hormonal parameters, including the FSHB c.-211G>T (rs10835638) single nucleotide polymorphism) for subsequent analyses. Cluster analyses were performed for the entire study population and for two sub-cohorts, which were separated by total sperm count (TSC) thresholds: Cohort A (TSC ≥ 1 mill/ejac; n=2422) and Cohort B (TSC < 1 mill/ejac; n=320). For clustering, the partitioning around medoids method was employed, and the quality was evaluated by average silhouette width. Results: The applied cluster approach for the whole study population yielded two separate clusters, which showed significantly different distributions in bi-testicular volume, FSH and FSHB genotype. Cluster 1 contained all men homozygous for G (wildtype) in FSHB c.-211G>T (100%), while Cluster 2 contained most patients carrying a T allele (>96.6%). In the analyses of sub-cohorts A/B, two clusters each were formed too. Again, the strongest segregation markers between the respective clusters were bi-testicular volume, FSH and FSHB c.-211G>T. Conclusion: With this first unbiased approach for revealing putative subgroups within a heterogenous group of idiopathic infertile men, we did indeed identify distinct patient clusters. Surprisingly, across all diverse phenotypes of infertility, the strongest segregation markers were FSHB c.-211G>T, FSH, and bi-testicular volume. Further, Cohorts A and B were significantly separated by FSHB genotype (wildtype vs. T-allele carriers), which supports the notion of a contributing genetic factor. Consequently, FSHB genotyping should be implemented as diagnostic routine in patients with idiopathic infertility.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/genética , Genotipo , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/genética , Adulto , Análisis por Conglomerados , Estudios de Cohortes , Humanos , Masculino , Estudios Retrospectivos
5.
Hum Reprod ; 35(9): 1983-1990, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32766702

RESUMEN

STUDY QUESTION: How can one design and implement a system that provides a comprehensive overview of research results in the field of epi-/genetics of male infertility and germ cells? SUMMARY ANSWER: Working at the interface of literature search engines and raw data repositories, the newly developed Male Fertility Gene Atlas (MFGA) provides a system that can represent aggregated results from scientific publications in a standardized way and perform advanced searches, for example based on the conditions (phenotypes) and genes related to male infertility. WHAT IS KNOWN ALREADY: PubMed and Google Scholar are established search engines for research literature. Additionally, repositories like Gene Expression Omnibus and Sequence Read Archive provide access to raw data. Selected processed data can be accessed by visualization tools like the ReproGenomics Viewer. STUDY DESIGN, SIZE, DURATION: The MFGA was developed in a time frame of 18 months under a rapid prototyping approach. PARTICIPANTS/MATERIALS, SETTING, METHODS: In the context of the Clinical Research Unit 'Male Germ Cells' (CRU326), a group of around 50 domain experts in the fields of male infertility and germ cells helped to develop the requirements engineering and feedback loops. They provided a set of 39 representative and heterogeneous publications to establish a basis for the system requirements. MAIN RESULTS AND THE ROLE OF CHANCE: The MFGA is freely available online at https://mfga.uni-muenster.de. To date, it contains 115 data sets corresponding to 54 manually curated publications and provides an advanced search function based on study conditions, meta-information and genes, whereby it returns the publications' exact tables and figures that fit the search request as well as a list of the most frequently investigated genes in the result set. Currently, study data for 31 different tissue types, 32 different cell types and 20 conditions are available. Also, ∼8000 and ∼1000 distinct genes have been found to be mentioned in at least 10 and 15 of the publications, respectively. LARGE SCALE DATA: Not applicable because no novel data were produced. LIMITATIONS, REASONS FOR CAUTION: For the most part, the content of the system currently includes the selected publications from the development process. However, a structured process for the prospective literature search and inclusion into the MFGA has been defined and is currently implemented. WIDER IMPLICATIONS OF THE FINDINGS: The technical implementation of the MFGA allows for accommodating a wide range of heterogeneous data from aggregated research results. This implementation can be transferred to other diseases to establish comparable systems and generally support research in the medical field. STUDY FUNDING/COMPETING INTEREST(S): This work was carried out within the frame of the German Research Foundation (DFG) Clinical Research Unit 'Male Germ Cells: from Genes to Function' (CRU326). The authors declare no conflicts of interest.


Asunto(s)
Infertilidad Masculina , Fertilidad , Humanos , Infertilidad Masculina/genética , Masculino , Fenotipo , Estudios Prospectivos
6.
J Biol Chem ; 295(38): 13181-13193, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32703901

RESUMEN

The sperm-specific Ca2+ channel CatSper (cation channel of sperm) controls the influx of Ca2+ into the flagellum and, thereby, the swimming behavior of sperm. A hallmark of human CatSper is its polymodal activation by membrane voltage, intracellular pH, and oviductal hormones. Whether CatSper is also activated by signaling pathways involving an increase of cAMP and ensuing activation of PKA is, however, a matter of controversy. To shed light on this question, we used kinetic ion-sensitive fluorometry, patch-clamp recordings, and optochemistry to study transmembrane Ca2+ flux and membrane currents in human sperm from healthy donors and from patients that lack functional CatSper channels. We found that human CatSper is neither activated by intracellular cAMP directly nor indirectly by the cAMP/PKA-signaling pathway. Instead, we show that nonphysiological concentrations of cAMP and membrane-permeable cAMP analogs used to mimic the action of intracellular cAMP activate human CatSper from the outside via a hitherto-unknown extracellular binding site. Finally, we demonstrate that the effects of common PKA inhibitors on human CatSper rest predominantly, if not exclusively, on off-target drug actions on CatSper itself rather than on inhibition of PKA. We conclude that the concept of an intracellular cAMP/PKA-activation of CatSper is primarily based on unspecific effects of chemical probes used to interfere with cAMP signaling. Altogether, our findings solve several controversial issues and reveal a novel ligand-binding site controlling the activity of CatSper, which has important bearings on future studies of cAMP and Ca2+ signaling in sperm.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Espermatozoides/metabolismo , Canales de Calcio/genética , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Concentración de Iones de Hidrógeno , Masculino , Espermatozoides/citología
7.
Am J Hum Genet ; 107(2): 342-351, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32673564

RESUMEN

Male infertility affects ∼7% of men, but its causes remain poorly understood. The most severe form is non-obstructive azoospermia (NOA), which is, in part, caused by an arrest at meiosis. So far, only a few validated disease-associated genes have been reported. To address this gap, we performed whole-exome sequencing in 58 men with unexplained meiotic arrest and identified the same homozygous frameshift variant c.676dup (p.Trp226LeufsTer4) in M1AP, encoding meiosis 1 associated protein, in three unrelated men. This variant most likely results in a truncated protein as shown in vitro by heterologous expression of mutant M1AP. Next, we screened four large cohorts of infertile men and identified three additional individuals carrying homozygous c.676dup and three carrying combinations of this and other likely causal variants in M1AP. Moreover, a homozygous missense variant, c.1166C>T (p.Pro389Leu), segregated with infertility in five men from a consanguineous Turkish family. The common phenotype between all affected men was NOA, but occasionally spermatids and rarely a few spermatozoa in the semen were observed. A similar phenotype has been described for mice with disruption of M1ap. Collectively, these findings demonstrate that mutations in M1AP are a relatively frequent cause of autosomal recessive severe spermatogenic failure and male infertility with strong clinical validity.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Infertilidad Masculina/genética , Meiosis/genética , Mutación/genética , Proteínas/genética , Espermatogénesis/genética , Adulto , Alelos , Animales , Azoospermia/genética , Homocigoto , Humanos , Masculino , Ratones , Fenotipo , Espermatozoides/anomalías , Testículo/anomalías , Turquía , Secuenciación del Exoma/métodos
8.
Andrology ; 8(5): 1030-1037, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32096339

RESUMEN

BACKGROUND: A genetic variant within the FSHB gene can deviate FSH action on spermatogenesis. The c.-211G>T FSHB single nucleotide polymorphism impacts FSHB transcription and biosynthesis due to interference with the LHX3 transcription factor binding. This SNP was previously shown to be strongly associated with lowered testicular volume, reduced sperm counts, and decreased FSH levels in patients carrying one or two T-alleles. OBJECTIVE: To determine the impact of the SNP FSHB c.-211G>T on Sertoli cell (SC) number, Sertoli cell workload (SCWL) and thereby spermatogenic potential. MATERIAL AND METHODS: Testicular biopsies of 31 azoospermic, homozygous T patients (26 non-obstructive azoospermia (NOA), and five obstructive azoospermia (OA)) were matched to patients with GG genotype. Marker proteins for SC (SOX9), spermatogonia (MAGE A4), and round spermatids (CREM) were used for semi-automatical quantification by immunofluorescence. SCWL (number of germ cells served by one SC) was determined and an unbiased clustering on the patient groups performed. RESULTS: Quantification of SC number in NOA patients did not yield significant differences when stratified by FSHB genotype. SC numbers are also not significantly different between FSHB genotypes for the OA patient group and between NOA and OA groups. SCWL in the NOA patient cohort is significantly reduced when compared to the OA control patients; however, in neither group an effect of the genotype could be observed. The cluster analysis of the whole study cohort yielded two groups only, namely NOA and OA, and no clustering according to the FSHB genotype. DISCUSSION AND CONCLUSION: The FSHB c.-211G>T polymorphism does not affect SC numbers or SCWL, thereby in principle maintaining the spermatogenic potential. The previously observed clinical phenotype for the FSHB genotype might therefore be caused by a hypo-stimulated spermatogenesis and not due to a decreased SC number.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/genética , Infertilidad Masculina/genética , Polimorfismo de Nucleótido Simple , Células de Sertoli , Espermatogénesis/genética , Azoospermia/genética , Recuento de Células , Estudios de Cohortes , Humanos , Masculino , Regiones Promotoras Genéticas , Recuento de Espermatozoides
9.
Am J Hum Genet ; 105(5): 1030-1039, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630787

RESUMEN

Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells.


Asunto(s)
Ventrículos Cerebrales/patología , Ciliopatías/genética , Factores de Transcripción Forkhead/genética , Hidrocefalia/genética , Mutación/genética , Cuerpos Basales/patología , Cilios/genética , Cilios/patología , Ciliopatías/patología , Epéndimo/patología , Células Epiteliales/patología , Humanos , Hidrocefalia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...