Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Nat Struct Mol Biol ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38783076

Dormancy is an essential biological process for the propagation of many life forms through generations and stressful conditions. Early embryos of many mammals are preservable for weeks to months within the uterus in a dormant state called diapause, which can be induced in vitro through mTOR inhibition. Cellular strategies that safeguard original cell identity within the silent genomic landscape of dormancy are not known. Here we show that the protection of cis-regulatory elements from silencing is key to maintaining pluripotency in the dormant state. We reveal a TET-transcription factor axis, in which TET-mediated DNA demethylation and recruitment of methylation-sensitive transcription factor TFE3 drive transcriptionally inert chromatin adaptations during dormancy transition. Perturbation of TET activity compromises pluripotency and survival of mouse embryos under dormancy, whereas its enhancement improves survival rates. Our results reveal an essential mechanism for propagating the cellular identity of dormant cells, with implications for regeneration and disease.

2.
Dev Cell ; 59(10): 1252-1268.e13, 2024 May 20.
Article En | MEDLINE | ID: mdl-38579720

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.


Cell Differentiation , Gastrulation , Germ Layers , Animals , Mice , Germ Layers/cytology , Germ Layers/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , Fetal Proteins/metabolism , Fetal Proteins/genetics , Wnt Signaling Pathway , Cell Proliferation , Gene Expression Regulation, Developmental , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism
3.
Blood ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684038

The T-box transcription factor T-bet is known as a master regulator of T-cell response but its role in malignant B cells is not sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with genetic knockout of TBX21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity induced by inflammatory signals provided by the microenvironment, triggered T-bet expression which impacted on promoter proximal and distal chromatin co-accessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling, and a negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of CLL patients. Our study uncovers a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling which has implications for stratification and therapy of CLL patients. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in inflammatory signaling pathways in CLL.

4.
Dev Cell ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38579718

Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.

5.
Bioinformatics ; 40(3)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38485699

MOTIVATION: Local alignments of query sequences in large databases represent a core part of metagenomic studies and facilitate homology search. Following the development of NCBI Blast, many applications aimed to provide faster and equally sensitive local alignment frameworks. Most applications focus on protein alignments, while only few also facilitate DNA-based searches. None of the established programs allow searching DNA sequences from bisulfite sequencing experiments commonly used for DNA methylation profiling, for which specific alignment strategies need to be implemented. RESULTS: Here, we introduce Lambda3, a new version of the local alignment application Lambda. Lambda3 is the first solution that enables the search of protein, nucleotide as well as bisulfite-converted nucleotide query sequences. Its protein mode achieves comparable performance to that of the highly optimized protein alignment application Diamond, while the nucleotide mode consistently outperforms established local nucleotide aligners. Combined, Lambda3 presents a universal local alignment framework that enables fast and sensitive homology searches for a wide range of use-cases. AVAILABILITY AND IMPLEMENTATION: Lambda3 is free and open-source software publicly available at https://github.com/seqan/lambda/.


Algorithms , Software , Sulfites , Sequence Alignment , Proteins
6.
Nat Commun ; 14(1): 8081, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38057307

In high-income countries, mosaic chromosomal alterations in peripheral blood leukocytes are associated with an elevated risk of adverse health outcomes, including hematologic malignancies. We investigate mosaic chromosomal alterations in sub-Saharan Africa among 931 children with Burkitt lymphoma, an aggressive lymphoma commonly characterized by immunoglobulin-MYC chromosomal rearrangements, 3822 Burkitt lymphoma-free children, and 674 cancer-free men from Ghana. We find autosomal and X chromosome mosaic chromosomal alterations in 3.4% and 1.7% of Burkitt lymphoma-free children, and 8.4% and 3.7% of children with Burkitt lymphoma (P-values = 5.7×10-11 and 3.74×10-2, respectively). Autosomal mosaic chromosomal alterations are detected in 14.0% of Ghanaian men and increase with age. Mosaic chromosomal alterations in Burkitt lymphoma cases include gains on chromosomes 1q and 8, the latter spanning MYC, while mosaic chromosomal alterations in Burkitt lymphoma-free children include copy-neutral loss of heterozygosity on chromosomes 10, 14, and 16. Our results highlight mosaic chromosomal alterations in sub-Saharan African populations as a promising area of research.


Burkitt Lymphoma , Male , Child , Humans , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , Ghana , Chromosome Aberrations , Leukocytes/pathology , Immunoglobulins/genetics , Translocation, Genetic
7.
Clin Epigenetics ; 15(1): 183, 2023 11 22.
Article En | MEDLINE | ID: mdl-37993930

BACKGROUND: Activation of dominant oncogenes by small or structural genomic alterations is a common driver mechanism in many cancers. Silencing of such dominantly activated oncogenic alleles, thus, is a promising strategy to treat cancer. Recently, allele-specific epigenome editing (ASEE) has been described as a means to reduce transcription of genes in an allele-specific manner. In cancer, specificity to an oncogenic allele can be reached by either targeting directly a pathogenic single-nucleotide variant or a polymorphic single-nucleotide variant linked to the oncogenic allele. To investigate the potential of ASEE in cancer, we here explored this approach by targeting variants at the TERT promoter region. The TERT promoter region has been described as one of the most frequently mutated non-coding cancer drivers. RESULTS: Sequencing of the TERT promoter in cancer cell lines showed 53% (41/77) to contain at least one heterozygous sequence variant allowing allele distinction. We chose the hepatoblastoma cell line Hep-G2 and the lung cancer cell line A-549 for this proof-of-principle study, as they contained two different kinds of variants, namely the activating mutation C228T in the TERT core promoter and the common SNP rs2853669 in the THOR region, respectively. These variants were targeted in an allele-specific manner using sgRNA-guided dCas9-DNMT3A-3L complexes. In both cell lines, we successfully introduced DNA methylation specifically to the on-target allele of the TERT promoter with limited background methylation on the off-target allele or an off-target locus (VEGFA), respectively. We observed a maximum CpG methylation gain of 39% and 76% on the target allele when targeting the activating mutation and the common SNP, respectively. The epigenome editing translated into reduced TERT RNA expression in Hep-G2. CONCLUSIONS: We applied an ASEE-mediated approach to silence TERT allele specifically. Our results show that the concept of dominant oncogene inactivation by allele-specific epigenome editing can be successfully translated into cancer models. This new strategy may have important advantages in comparison with existing therapeutic approaches, e.g., targeting telomerase, especially with regard to reducing adverse side effects.


Lung Neoplasms , Telomerase , Humans , Alleles , DNA Methylation , Epigenome , RNA, Guide, CRISPR-Cas Systems , Promoter Regions, Genetic , Nucleotides , Mutation , Telomerase/genetics
8.
Nat Genet ; 55(7): 1176-1185, 2023 07.
Article En | MEDLINE | ID: mdl-37414952

Spatiotemporal orchestration of gene expression is required for proper embryonic development. The use of single-cell technologies has begun to provide improved resolution of early regulatory dynamics, including detailed molecular definitions of most cell states during mouse embryogenesis. Here we used Slide-seq to build spatial transcriptomic maps of complete embryonic day (E) 8.5 and E9.0, and partial E9.5 embryos. To support their utility, we developed sc3D, a tool for reconstructing and exploring three-dimensional 'virtual embryos', which enables the quantitative investigation of regionalized gene expression patterns. Our measurements along the main embryonic axes of the developing neural tube revealed several previously unannotated genes with distinct spatial patterns. We also characterized the conflicting transcriptional identity of 'ectopic' neural tubes that emerge in Tbx6 mutant embryos. Taken together, we present an experimental and computational framework for the spatiotemporal investigation of whole embryonic structures and mutant phenotypes.


Organogenesis , Transcriptome , Mice , Animals , Transcriptome/genetics , Organogenesis/genetics , Embryonic Development/genetics , Embryo, Mammalian , Phenotype , Gene Expression Regulation, Developmental/genetics , T-Box Domain Proteins/genetics
10.
Nature ; 622(7983): 574-583, 2023 Oct.
Article En | MEDLINE | ID: mdl-37369348

Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.


Cell Lineage , Embryo Implantation , Embryonic Development , Pluripotent Stem Cells , Female , Humans , Pregnancy , Cell Differentiation , Germ Layers/cytology , Germ Layers/enzymology , Human Embryonic Stem Cells/cytology , Placenta/cytology , Pluripotent Stem Cells/cytology , Primitive Streak/cytology , Primitive Streak/embryology , Yolk Sac/cytology , Yolk Sac/embryology
11.
Nat Cell Biol ; 25(4): 579-591, 2023 04.
Article En | MEDLINE | ID: mdl-37024684

DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains. Here, to better understand this unusual landscape's molecular properties, we genetically and chemically perturbed major epigenetic pathways in mouse trophoblast stem cells. We find that the extra-embryonic epigenome reflects ongoing and dynamic de novo methyltransferase recruitment, which is continuously antagonized by Polycomb to maintain intermediate, locally disordered methylation. Despite its disorganized molecular appearance, our data point to a highly controlled equilibrium between counteracting repressors within extra-embryonic cells, one that can seemingly persist indefinitely without bistable features typically seen for embryonic forms of epigenetic regulation.


Epigenesis, Genetic , Epigenome , Animals , Mice , Female , Pregnancy , Epigenome/genetics , Placenta/metabolism , DNA Methylation , Polycomb-Group Proteins/genetics , DNA/metabolism , Mammals/metabolism
12.
Elife ; 122023 01 31.
Article En | MEDLINE | ID: mdl-36719724

Long non-coding RNAs (lncRNAs) have emerged as fundamental regulators in various biological processes, including embryonic development and cellular differentiation. Despite much progress over the past decade, the genome-wide annotation of lncRNAs remains incomplete and many known non-coding loci are still poorly characterized. Here, we report the discovery of a previously unannotated lncRNA that is transcribed 230 kb upstream of the SOX17 gene and located within the same topologically associating domain. We termed it T-REX17 (Transcript Regulating Endoderm and activated by soX17) and show that it is induced following SOX17 activation but its expression is more tightly restricted to early definitive endoderm. Loss of T-REX17 affects crucial functions independent of SOX17 and leads to an aberrant endodermal transcriptome, signaling pathway deregulation and epithelial to mesenchymal transition defects. Consequently, cells lacking the lncRNA cannot further differentiate into more mature endodermal cell types. Taken together, our study identified and characterized T-REX17 as a transiently expressed and essential non-coding regulator in early human endoderm differentiation.


RNA, Long Noncoding , Pregnancy , Female , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Epithelial-Mesenchymal Transition , Endoderm , Gene Expression Regulation, Developmental , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Cell Differentiation/genetics
13.
Haematologica ; 108(2): 543-554, 2023 02 01.
Article En | MEDLINE | ID: mdl-35522148

Histone methylation-modifiers, such as EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%), also identified by prior exome or RNA-sequencing studies, we here found recurrent alterations to KDM4C in chromosome 9p24, encoding a histone demethylase. Focal structural variation was the main mechanism of KDM4C alterations, and was independent from 9p24 amplification. We also identified KDM4C alterations in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNA-sequencing and genome sequencing data we predict that KDM4C structural variants result in loss-offunction. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as a tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as a putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas.


Lymphoma, B-Cell , Lymphoma , Humans , Histones/metabolism , Histone Demethylases/genetics , Homozygote , Sequence Deletion , Lymphoma/genetics , Lymphoma, B-Cell/genetics , Whole Genome Sequencing , RNA , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/genetics
14.
Nat Genet ; 54(11): 1664-1674, 2022 11.
Article En | MEDLINE | ID: mdl-35927489

Recent advances in cancer characterization have consistently revealed marked heterogeneity, impeding the completion of integrated molecular and clinical maps for each malignancy. Here, we focus on chronic lymphocytic leukemia (CLL), a B cell neoplasm with variable natural history that is conventionally categorized into two subtypes distinguished by extent of somatic mutations in the heavy-chain variable region of immunoglobulin genes (IGHV). To build the 'CLL map,' we integrated genomic, transcriptomic and epigenomic data from 1,148 patients. We identified 202 candidate genetic drivers of CLL (109 new) and refined the characterization of IGHV subtypes, which revealed distinct genomic landscapes and leukemogenic trajectories. Discovery of new gene expression subtypes further subcategorized this neoplasm and proved to be independent prognostic factors. Clinical outcomes were associated with a combination of genetic, epigenetic and gene expression features, further advancing our prognostic paradigm. Overall, this work reveals fresh insights into CLL oncogenesis and prognostication.


Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Immunoglobulin Variable Region/genetics , Mutation , Prognosis , Genomics
15.
Curr Opin Genet Dev ; 76: 101947, 2022 10.
Article En | MEDLINE | ID: mdl-35839561

The totipotent zygote gives rise to diverse cell types through a series of well-orchestrated regulatory mechanisms. Epigenetic modifiers play an essential, though still poorly understood, role in the transition from pluripotency towards organogenesis. However, recent advances in single-cell technologies have enabled an unprecedented, high-resolution dissection of this crucial developmental window, highlighting more cell-type-specific functions of these ubiquitous regulators. In this review, we discuss and contextualize several recent studies that explore epigenetic regulation during mouse embryogenesis, emphasizing the opportunities presented by single-cell technologies, in vivo perturbation approaches as well as advanced in vitro models to characterize dynamic developmental transitions.


Epigenesis, Genetic , Gene Expression Regulation, Developmental , Animals , Embryonic Development/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Mice , Zygote/metabolism
16.
Nat Genet ; 54(8): 1238-1247, 2022 08.
Article En | MEDLINE | ID: mdl-35864192

Most endogenous retroviruses (ERVs) in mammals are incapable of retrotransposition; therefore, why ERV derepression is associated with lethality during early development has been a mystery. Here, we report that rapid and selective degradation of the heterochromatin adapter protein TRIM28 triggers dissociation of transcriptional condensates from loci encoding super-enhancer (SE)-driven pluripotency genes and their association with transcribed ERV loci in murine embryonic stem cells. Knockdown of ERV RNAs or forced expression of SE-enriched transcription factors rescued condensate localization at SEs in TRIM28-degraded cells. In a biochemical reconstitution system, ERV RNA facilitated partitioning of RNA polymerase II and the Mediator coactivator into phase-separated droplets. In TRIM28 knockout mouse embryos, single-cell RNA-seq analysis revealed specific depletion of pluripotent lineages. We propose that coding and noncoding nascent RNAs, including those produced by retrotransposons, may facilitate 'hijacking' of transcriptional condensates in various developmental and disease contexts.


Endogenous Retroviruses , Animals , Embryonic Stem Cells , Endogenous Retroviruses/genetics , Heterochromatin , Mammals/genetics , Mice , Nuclear Bodies , Retroelements
17.
Nat Cancer ; 3(6): 768-782, 2022 06.
Article En | MEDLINE | ID: mdl-35590059

DNA methylation is tightly regulated during development and is stably maintained in healthy cells. In contrast, cancer cells are commonly characterized by a global loss of DNA methylation co-occurring with CpG island hypermethylation. In acute lymphoblastic leukemia (ALL), the commonest childhood cancer, perturbations of CpG methylation have been reported to be associated with genetic disease subtype and outcome, but data from large cohorts at a genome-wide scale are lacking. Here, we performed whole-genome bisulfite sequencing across ALL subtypes, leukemia cell lines and healthy hematopoietic cells, and show that unlike most cancers, ALL samples exhibit CpG island hypermethylation but minimal global loss of methylation. This was most pronounced in T cell ALL and accompanied by an exceptionally broad range of hypermethylation of CpG islands between patients, which is influenced by TET2 and DNMT3B. These findings demonstrate that ALL is characterized by an unusually highly methylated genome and provide further insights into the non-canonical regulation of methylation in cancer.


Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , CpG Islands/genetics , DNA Methylation/genetics , Genome, Human , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Promoter Regions, Genetic
18.
Genes Chromosomes Cancer ; 61(7): 432-436, 2022 07.
Article En | MEDLINE | ID: mdl-35218115

Deregulation of micro(mi)-RNAs is a common mechanism in tumorigenesis. We investigated the expression of 2083 miRNAs in T-cell prolymphocytic leukemia (T-PLL). Compared to physiologic CD4+ and CD8+ T-cell subsets, 111 miRNAs were differentially expressed in T-PLL. Of these, 33 belonged to miRNA gene clusters linked to cancer. Genomic variants affecting miRNAs were infrequent with the notable exception of copy number aberrations. Remarkably, we found strong upregulation of the miR-200c/-141 cluster in T-PLL to be associated with DNA hypomethylation and active promoter marks. Our findings suggest that copy number aberrations and epigenetic changes could contribute to miRNA deregulation in T-PLL.


Leukemia, Prolymphocytic, T-Cell , MicroRNAs , Carcinogenesis/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Leukemia, Prolymphocytic, T-Cell/genetics , MicroRNAs/genetics
19.
iScience ; 25(1): 103556, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-34988400

The segregation of definitive endoderm (DE) from bipotent mesendoderm progenitors leads to the formation of two distinct germ layers. Dissecting DE commitment and onset has been challenging as it occurs within a narrow spatiotemporal window in the embryo. Here, we employ a dual Bra/Sox17 reporter cell line to study DE onset dynamics. We find Sox17 expression initiates in vivo in isolated cells within a temporally restricted window. In 2D and 3D in vitro models, DE cells emerge from mesendoderm progenitors at a temporally regular, but spatially stochastic pattern, which is subsequently arranged by self-sorting of Sox17 + cells. A subpopulation of Bra-high cells commits to a Sox17+ fate independent of external Wnt signal. Self-sorting coincides with upregulation of E-cadherin but is not necessary for DE differentiation or proliferation. Our in vivo and in vitro results highlight basic rules governing DE onset and patterning through the commonalities and differences between these systems.

20.
Dev Cell ; 56(21): 2995-3005.e4, 2021 11 08.
Article En | MEDLINE | ID: mdl-34752748

Genomic imprinting and X chromosome inactivation (XCI) require epigenetic mechanisms to encode allele-specific expression, but how these specific tasks are accomplished at single loci or across chromosomal scales remains incompletely understood. Here, we systematically disrupt essential epigenetic pathways within polymorphic embryos in order to examine canonical and non-canonical genomic imprinting as well as XCI. We find that DNA methylation and Polycomb group repressors are indispensable for autosomal imprinting, albeit at distinct gene sets. Moreover, the extraembryonic ectoderm relies on a broader spectrum of imprinting mechanisms, including non-canonical targeting of maternal endogenous retrovirus (ERV)-driven promoters by the H3K9 methyltransferase G9a. We further identify Polycomb-dependent and -independent gene clusters on the imprinted X chromosome, which appear to reflect distinct domains of Xist-mediated suppression. From our data, we assemble a comprehensive inventory of the epigenetic pathways that maintain parent-specific imprinting in eutherian mammals, including an expanded view of the placental lineage.


Cell Lineage/physiology , Ectoderm/metabolism , Genomic Imprinting/genetics , Placenta/metabolism , Animals , DNA Methylation/physiology , Epigenesis, Genetic/genetics , Female , Histones/metabolism , Mice , Pregnancy , RNA, Long Noncoding/genetics
...