Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
1.
Nutrients ; 16(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38337658

Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli. A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species.


Gastrointestinal Microbiome , Nasturtium , Tropaeolum , Female , Humans , Isothiocyanates/pharmacology , Bacteria , Escherichia coli , Metabolome
2.
Int J Cancer ; 154(12): 2162-2175, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38353498

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, often diagnosed at stages that dis-qualify for surgical resection. Neoadjuvant therapies offer potential tumor regression and improved resectability. Although features of the tumor biology (e.g., molecular markers) may guide adjuvant therapy, biological alterations after neoadjuvant therapy remain largely unexplored. We performed mass spectrometry to characterize the proteomes of 67 PDAC resection specimens of patients who received either neoadjuvant chemo (NCT) or chemo-radiation (NCRT) therapy. We employed data-independent acquisition (DIA), yielding a proteome coverage in excess of 3500 proteins. Moreover, we successfully integrated two publicly available proteome datasets of treatment-naïve PDAC to unravel proteome alterations in response to neoadjuvant therapy, highlighting the feasibility of this approach. We found highly distinguishable proteome profiles. Treatment-naïve PDAC was characterized by enrichment of immunoglobulins, complement and extracellular matrix (ECM) proteins. Post-NCT and post-NCRT PDAC presented high abundance of ribosomal and metabolic proteins as compared to treatment-naïve PDAC. Further analyses on patient survival and protein expression identified treatment-specific prognostic candidates. We present the first proteomic characterization of the residual PDAC mass after NCT and NCRT, and potential protein candidate markers associated with overall survival. We conclude that residual PDAC exhibits fundamentally different proteome profiles as compared to treatment-naïve PDAC, influenced by the type of neoadjuvant treatment. These findings may impact adjuvant or targeted therapy options.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Neoadjuvant Therapy , Ribosomal Proteins , Proteome , Neoplasm, Residual , Proteomics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Complement Activation , Energy Metabolism
3.
Plant J ; 117(3): 909-923, 2024 Feb.
Article En | MEDLINE | ID: mdl-37953711

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Arabidopsis Proteins , Arabidopsis , Bryopsida , Germination/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Plant Dormancy/genetics , Phylogeny , Spores, Fungal/metabolism , Bryopsida/genetics , Bryopsida/metabolism , Seeds/metabolism , Gene Expression Regulation, Plant
4.
Biomedicines ; 11(10)2023 Oct 05.
Article En | MEDLINE | ID: mdl-37893081

BACKGROUND: Breast cancer is the most common type of cancer worldwide. Cyclin-dependent kinase inhibition is one of the backbones of metastatic breast cancer therapy. However, there are a significant number of therapy failures. This study evaluates the biomarker potential of microRNAs for the prediction of a therapy response under cyclin-dependent kinase inhibition. METHODS: This study comprises the analysis of intracellular and extracellular microRNA-expression-level alterations of 56 microRNAs under palbociclib mono as well as combination therapy with letrozole. Breast cancer cell lines BT-474, MCF-7 and HS-578T were analyzed using qPCR. RESULTS: A palbociclib-induced microRNA signature could be detected intracellularly as well as extracellularly. Intracellular miR-10a, miR-15b, miR-21, miR-23a and miR-23c were constantly regulated in all three cell lines, whereas let-7b, let-7d, miR-15a, miR-17, miR-18a, miR-20a, miR-191 and miR301a_3p were regulated only in hormone-receptor-positive cells. Extracellular miR-100, miR-10b and miR-182 were constantly regulated across all cell lines, whereas miR-17 was regulated only in hormone-receptor-positive cells. CONCLUSIONS: Because they are secreted and significantly upregulated in the microenvironment of tumor cells, miRs-100, -10b and -182 are promising circulating biomarkers that can be used to predict or detect therapy responses under CDK inhibition. MiR-10a, miR-15b, miR-21, miR-23a and miR-23c are potential tissue-based biomarkers.

5.
PLoS Comput Biol ; 19(9): e1011417, 2023 09.
Article En | MEDLINE | ID: mdl-37738254

Likelihood ratios are frequently utilized as basis for statistical tests, for model selection criteria and for assessing parameter and prediction uncertainties, e.g. using the profile likelihood. However, translating these likelihood ratios into p-values or confidence intervals requires the exact form of the test statistic's distribution. The lack of knowledge about this distribution for nonlinear ordinary differential equation (ODE) models requires an approximation which assumes the so-called asymptotic setting, i.e. a sufficiently large amount of data. Since the amount of data from quantitative molecular biology is typically limited in applications, this finite-sample case regularly occurs for mechanistic models of dynamical systems, e.g. biochemical reaction networks or infectious disease models. Thus, it is unclear whether the standard approach of using statistical thresholds derived for the asymptotic large-sample setting in realistic applications results in valid conclusions. In this study, empirical likelihood ratios for parameters from 19 published nonlinear ODE benchmark models are investigated using a resampling approach for the original data designs. Their distributions are compared to the asymptotic approximation and statistical thresholds are checked for conservativeness. It turns out, that corrections of the likelihood ratios in such finite-sample applications are required in order to avoid anti-conservative results.


Algorithms , Nonlinear Dynamics , Likelihood Functions , Uncertainty
6.
Microorganisms ; 11(9)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37764207

Cancers of the biliary tract are more common in Asia than in Europe, but are highly lethal due to delayed diagnosis and aggressive tumor biology. Since the biliary tract is in direct contact with the gut via the enterohepatic circulation, this suggests a potential role of gut microbiota, but to date, the role of gut microbiota in biliary tract cancers has not been elucidated. This scoping review compiles recent data on the associations between the gut microbiota and diagnosis, progression and prognosis of biliary tract cancer patients. Systematic review of the literature yielded 154 results, of which 12 studies and one systematic review were eligible for evaluation. The analyses of microbiota diversity indices were inconsistent across the included studies. In-depth analyses revealed differences between gut microbiota of biliary tract cancer patients and healthy controls, but without a clear tendency towards particular species in the studies. Additionally, most of the studies showed methodological flaws, for example non-controlling of factors that affect gut microbiota. At the current stage, there is a lack of evidence to support a general utility of gut microbiota diagnostics in biliary tract cancers. Therefore, no recommendation can be made at this time to include gut microbiota analyses in the management of biliary tract cancer patients.

7.
Elife ; 122023 07 12.
Article En | MEDLINE | ID: mdl-37435805

Calcineurin B homologous protein 3 (CHP3) is an EF-hand Ca2+-binding protein involved in regulation of cancerogenesis, cardiac hypertrophy, and neuronal development through interactions with sodium/proton exchangers (NHEs) and signalling proteins. While the importance of Ca2+ binding and myristoylation for CHP3 function has been recognized, the underlying molecular mechanism remained elusive. In this study, we demonstrate that Ca2+ binding and myristoylation independently affect the conformation and functions of human CHP3. Ca2+ binding increased local flexibility and hydrophobicity of CHP3 indicative of an open conformation. The Ca2+-bound CHP3 exhibited a higher affinity for NHE1 and associated stronger with lipid membranes compared to the Mg2+-bound CHP3, which adopted a closed conformation. Myristoylation enhanced the local flexibility of CHP3 and decreased its affinity to NHE1 independently of the bound ion, but did not affect its binding to lipid membranes. The data exclude the proposed Ca2+-myristoyl switch for CHP3. Instead, a Ca2+-independent exposure of the myristoyl moiety is induced by binding of the target peptide to CHP3 enhancing its association to lipid membranes. We name this novel regulatory mechanism 'target-myristoyl switch'. Collectively, the interplay of Ca2+ binding, myristoylation, and target binding allows for a context-specific regulation of CHP3 functions.


Calcineurin , Calcium-Binding Proteins , Humans , Calcineurin/metabolism , Calcium-Binding Proteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Molecular Conformation , Protons , Lipids , Calcium/metabolism , Protein Binding , Protein Conformation
8.
Math Biosci Eng ; 20(6): 10570-10589, 2023 04 11.
Article En | MEDLINE | ID: mdl-37322949

In systems biology, the analysis of complex nonlinear systems faces many methodological challenges. For the evaluation and comparison of the performances of novel and competing computational methods, one major bottleneck is the availability of realistic test problems. We present an approach for performing realistic simulation studies for analyses of time course data as they are typically measured in systems biology. Since the design of experiments in practice depends on the process of interest, our approach considers the size and the dynamics of the mathematical model which is intended to be used for the simulation study. To this end, we used 19 published systems biology models with experimental data and evaluated the relationship between model features (e.g., the size and the dynamics) and features of the measurements such as the number and type of observed quantities, the number and the selection of measurement times, and the magnitude of measurement errors. Based on these typical relationships, our novel approach enables suggestions of realistic simulation study designs in the systems biology context and the realistic generation of simulated data for any dynamic model. The approach is demonstrated on three models in detail and its performance is validated on nine models by comparing ODE integration, parameter optimization, and parameter identifiability. The presented approach enables more realistic and less biased benchmark studies and thereby constitutes an important tool for the development of novel methods for dynamic modeling.


Algorithms , Systems Biology , Systems Biology/methods , Models, Biological , Computer Simulation , Models, Theoretical
9.
PLoS Biol ; 21(5): e3001665, 2023 05.
Article En | MEDLINE | ID: mdl-37252939

Epithelial repair relies on the activation of stress signaling pathways to coordinate tissue repair. Their deregulation is implicated in chronic wound and cancer pathologies. Using TNF-α/Eiger-mediated inflammatory damage to Drosophila imaginal discs, we investigate how spatial patterns of signaling pathways and repair behaviors arise. We find that Eiger expression, which drives JNK/AP-1 signaling, transiently arrests proliferation of cells in the wound center and is associated with activation of a senescence program. This includes production of the mitogenic ligands of the Upd family, which allows JNK/AP-1-signaling cells to act as paracrine organizers of regeneration. Surprisingly, JNK/AP-1 cell-autonomously suppress activation of Upd signaling via Ptp61F and Socs36E, both negative regulators of JAK/STAT signaling. As mitogenic JAK/STAT signaling is suppressed in JNK/AP-1-signaling cells at the center of tissue damage, compensatory proliferation occurs by paracrine activation of JAK/STAT in the wound periphery. Mathematical modelling suggests that cell-autonomous mutual repression between JNK/AP-1 and JAK/STAT is at the core of a regulatory network essential to spatially separate JNK/AP-1 and JAK/STAT signaling into bistable spatial domains associated with distinct cellular tasks. Such spatial stratification is essential for proper tissue repair, as coactivation of JNK/AP-1 and JAK/STAT in the same cells creates conflicting signals for cell cycle progression, leading to excess apoptosis of senescently stalled JNK/AP-1-signaling cells that organize the spatial field. Finally, we demonstrate that bistable separation of JNK/AP-1 and JAK/STAT drives bistable separation of senescent signaling and proliferative behaviors not only upon tissue damage, but also in RasV12, scrib tumors. Revealing this previously uncharacterized regulatory network between JNK/AP-1, JAK/STAT, and associated cell behaviors has important implications for our conceptual understanding of tissue repair, chronic wound pathologies, and tumor microenvironments.


Drosophila Proteins , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Transcription Factor AP-1/metabolism , STAT Transcription Factors/metabolism , Drosophila/metabolism , Cell Proliferation , Janus Kinases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
10.
bioRxiv ; 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36824900

Tissue functions are determined by the types and ratios of cells present, but little is known about self-organizing principles establishing correct cell type compositions. Mucociliary airway clearance relies on the correct balance between secretory and ciliated cells, which is regulated by Notch signaling across mucociliary systems. Using the airway-like Xenopus epidermis, we investigate how cell fates depend on signaling, how signaling levels are controlled, and how Hes transcription factors regulate cell fates. We show that four mucociliary cell types each require different Notch levels and that their specification is initiated sequentially by a temporal Notch gradient. We describe a novel role for Foxi1 in the generation of Delta-expressing multipotent progenitors through Hes7.1. Hes7.1 is a weak repressor of mucociliary genes and overcomes maternal repression by the strong repressor Hes2 to initiate mucociliary development. Increasing Notch signaling then inhibits Hes7.1 and activates first Hes4, then Hes5.10, which selectively repress cell fates. We have uncovered a self-organizing mechanism of mucociliary cell type composition by competitive de-repression of cell fates by a set of differentially acting repressors. Furthermore, we present an in silico model of this process with predictive abilities.

11.
Sci Signal ; 16(768): eabh1083, 2023 01 17.
Article En | MEDLINE | ID: mdl-36649377

Inflammasomes are intracellular protein complexes that promote an inflammatory host defense in response to pathogens and damaged or neoplastic tissues and are implicated in inflammatory disorders and therapeutic-induced toxicity. We investigated the mechanisms of activation for inflammasomes nucleated by NOD-like receptor (NLR) protiens. A screen of a small-molecule library revealed that several tyrosine kinase inhibitors (TKIs)-including those that are clinically approved (such as imatinib and crizotinib) or are in clinical trials (such as masitinib)-activated the NLRP3 inflammasome. Furthermore, imatinib and masitinib caused lysosomal swelling and damage independently of their kinase target, leading to cathepsin-mediated destabilization of myeloid cell membranes and, ultimately, cell lysis that was accompanied by potassium (K+) efflux, which activated NLRP3. This effect was specific to primary myeloid cells (such as peripheral blood mononuclear cells and mouse bone marrow-derived dendritic cells) and did not occur in other primary cell types or various cell lines. TKI-induced lytic cell death and NLRP3 activation, but not lysosomal damage, were prevented by stabilizing cell membranes. Our findings reveal a potential immunological off-target of some TKIs that may contribute to their clinical efficacy or to their adverse effects.


Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Imatinib Mesylate , Leukocytes, Mononuclear/metabolism , Cell Death , Myeloid Cells/metabolism , Interleukin-1beta/metabolism
12.
Med Klin Intensivmed Notfmed ; 118(2): 125-131, 2023 Mar.
Article De | MEDLINE | ID: mdl-35267045

BACKGROUND: Time-series forecasting models play a central role in guiding intensive care coronavirus disease 2019 (COVID-19) bed capacity in a pandemic. A key predictor of future intensive care unit (ICU) COVID-19 bed occupancy is the number of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the general population, which in turn is highly associated with week-to-week variability, reporting delays, regional differences, number of unknown cases, time-dependent infection rates, vaccinations, SARS-CoV­2 virus variants, and nonpharmaceutical containment measures. Furthermore, current and also future COVID ICU occupancy is significantly influenced by ICU discharge and mortality rates. METHODS: Both the number of new SARS-CoV­2 infections in the general population and intensive care COVID-19 bed occupancy rates are recorded in Germany. These data are statistically analyzed on a daily basis using epidemic SEIR (susceptible, exposed, infection, recovered) models using ordinary differential equations and multiple regression models. RESULTS: Forecast results of the immediate trend (20-day forecast) of ICU occupancy by COVID-19 patients are made available to decision makers at various levels throughout the country. CONCLUSION: The forecasts are compared with the development of available ICU bed capacities in order to identify capacity limitations at an early stage and to enable short-term solutions to be made, such as supraregional transfers.


COVID-19 , Humans , SARS-CoV-2 , Critical Care , Germany
13.
Front Cell Infect Microbiol ; 13: 1275405, 2023.
Article En | MEDLINE | ID: mdl-38287975

Introduction: Alterations of the gut microbiome are involved in the pathogenesis of Crohn's disease (CD). The role of fungi in this context is unclear. This study aimed to determine postoperative changes in the bacterial and fungal gut communities of CD patients undergoing intestinal resection, and to evaluate interactions between the bacteriome and mycobiome and their impact on the patients' outcome. Methods: We report a subgroup analysis of a prospective cohort study, focusing on 10 CD patients whose fecal samples were collected for bacterial 16S rRNA and fungal ITS2 genes next-generation sequencing the day before surgery and on the 5th or 6th postoperative day. Results: No significant differences in bacterial and fungal diversity were observed between preoperative and postoperative stool samples. By in-depth analysis, significant postoperative abundance changes of bacteria and fungi and 17 interkingdom correlations were detected. Network analysis identified 13 microbial clusters in the perioperative gut communities, revealing symbiotic and competitive interactions. Relevant factors were gender, age, BMI, lifestyle habits (smoking, alcohol consumption) and surgical technique. Postoperative abundance changes and identified clusters were associated with clinical outcomes (length of hospital stay, complications) and levels of inflammatory markers. Conclusions: Our findings highlight the importance of dissecting the interactions of gut bacterial and fungal communities in CD patients and their potential influence on postoperative and disease outcomes.


Crohn Disease , Digestive System Surgical Procedures , Mycobiome , Humans , Crohn Disease/surgery , RNA, Ribosomal, 16S/genetics , Prospective Studies , Bacteria/genetics , Fungi/genetics
14.
Front Mol Biosci ; 9: 962644, 2022.
Article En | MEDLINE | ID: mdl-36387277

Recent extensions of single-cell studies to multiple data modalities raise new questions regarding experimental design. For example, the challenge of sparsity in single-omics data might be partly resolved by compensating for missing information across modalities. In particular, deep learning approaches, such as deep generative models (DGMs), can potentially uncover complex patterns via a joint embedding. Yet, this also raises the question of sample size requirements for identifying such patterns from single-cell multi-omics data. Here, we empirically examine the quality of DGM-based integrations for varying sample sizes. We first review the existing literature and give a short overview of deep learning methods for multi-omics integration. Next, we consider eight popular tools in more detail and examine their robustness to different cell numbers, covering two of the most common multi-omics types currently favored. Specifically, we use data featuring simultaneous gene expression measurements at the RNA level and protein abundance measurements for cell surface proteins (CITE-seq), as well as data where chromatin accessibility and RNA expression are measured in thousands of cells (10x Multiome). We examine the ability of the methods to learn joint embeddings based on biological and technical metrics. Finally, we provide recommendations for the design of multi-omics experiments and discuss potential future developments.

15.
Nat Commun ; 13(1): 5654, 2022 09 26.
Article En | MEDLINE | ID: mdl-36163132

A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies characterizes patients with severe or critical COVID-19. Although a robust IgG response is considered to be protective, excessive triggering of activating Fc-gamma-receptors (FcγRs) could be detrimental and cause immunopathology. Here, we document excessive FcγRIIIA/CD16A activation in patients developing severe or critical COVID-19 but not in those with mild disease. We identify two independent ligands mediating extreme FcγRIIIA/CD16A activation. Soluble circulating IgG immune complexes (sICs) are detected in about 80% of patients with severe and critical COVID-19 at levels comparable to active systemic lupus erythematosus (SLE) disease. FcγRIIIA/CD16A activation is further enhanced by afucosylation of SARS-CoV-2 specific IgG. Utilizing cell-based reporter systems we provide evidence that sICs can be formed prior to a specific humoral response against SARS-CoV-2. Our data suggest a cycle of immunopathology driven by an early formation of sICs in predisposed patients. These findings suggest a reason for the seemingly paradoxical findings of high antiviral IgG responses and systemic immune dysregulation in severe COVID-19. The involvement of circulating sICs in the promotion of immunopathology in predisposed patients opens new possibilities for intervention strategies to mitigate critical COVID-19 progression.


COVID-19 , Antibodies, Viral , Antigen-Antibody Complex , Antiviral Agents , Humans , Immunoglobulin G , SARS-CoV-2
16.
Nat Commun ; 13(1): 2622, 2022 05 12.
Article En | MEDLINE | ID: mdl-35551187

Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical samples, necessitating their comprehensive benchmarking. We present a benchmark dataset comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking of DIA data analysis workflows for clinical settings. Combining spectral libraries, DIA software, sparsity reduction, normalization, and statistical tests results in 1428 distinct data analysis workflows, which we evaluate based on their ability to correctly identify differentially abundant proteins. From our dataset, we derive bootstrap datasets of varying sample sizes and use the whole range of bootstrap datasets to robustly evaluate each workflow. We find that all DIA software suites benefit from using a gas-phase fractionated spectral library, irrespective of the library refinement used. Gas-phase fractionation-based libraries perform best against two out of three reference protein lists. Among all investigated statistical tests non-parametric permutation-based statistical tests consistently perform best.


Benchmarking , Proteomics , Humans , Proteome/analysis , Proteomics/methods , Software , Workflow
17.
BMC Med Res Methodol ; 22(1): 116, 2022 04 20.
Article En | MEDLINE | ID: mdl-35443607

BACKGROUND: The COVID-19 pandemic has led to a high interest in mathematical models describing and predicting the diverse aspects and implications of the virus outbreak. Model results represent an important part of the information base for the decision process on different administrative levels. The Robert-Koch-Institute (RKI) initiated a project whose main goal is to predict COVID-19-specific occupation of beds in intensive care units: Steuerungs-Prognose von Intensivmedizinischen COVID-19 Kapazitäten (SPoCK). The incidence of COVID-19 cases is a crucial predictor for this occupation. METHODS: We developed a model based on ordinary differential equations for the COVID-19 spread with a time-dependent infection rate described by a spline. Furthermore, the model explicitly accounts for weekday-specific reporting and adjusts for reporting delay. The model is calibrated in a purely data-driven manner by a maximum likelihood approach. Uncertainties are evaluated using the profile likelihood method. The uncertainty about the appropriate modeling assumptions can be accounted for by including and merging results of different modelling approaches. The analysis uses data from Germany describing the COVID-19 spread from early 2020 until March 31st, 2021. RESULTS: The model is calibrated based on incident cases on a daily basis and provides daily predictions of incident COVID-19 cases for the upcoming three weeks including uncertainty estimates for Germany and its subregions. Derived quantities such as cumulative counts and 7-day incidences with corresponding uncertainties can be computed. The estimation of the time-dependent infection rate leads to an estimated reproduction factor that is oscillating around one. Data-driven estimation of the dark figure purely from incident cases is not feasible. CONCLUSIONS: We successfully implemented a procedure to forecast near future COVID-19 incidences for diverse subregions in Germany which are made available to various decision makers via an interactive web application. Results of the incidence modeling are also used as a predictor for forecasting the need of intensive care units.


COVID-19 , COVID-19/epidemiology , Decision Making , Forecasting , Germany/epidemiology , Humans , Likelihood Functions , Pandemics , SARS-CoV-2
18.
Front Mol Biosci ; 9: 800856, 2022.
Article En | MEDLINE | ID: mdl-35281278

Dynamic behavior of biological systems is commonly represented by non-linear models such as ordinary differential equations. A frequently encountered task in such systems is the estimation of model parameters based on measurement of biochemical compounds. Non-linear models require special techniques to estimate the uncertainty of the obtained model parameters and predictions, e.g. by exploiting the concept of the profile likelihood. Model parameters with significant uncertainty associated with their estimates hinder the interpretation of model results. Informing these model parameters by optimal experimental design minimizes the additional amount of data and therefore resources required in experiments. However, existing techniques of experimental design either require prior parameter distributions in Bayesian approaches or do not adequately deal with the non-linearity of the system in frequentist approaches. For identification of optimal experimental designs, we propose a two-dimensional profile likelihood approach, providing a design criterion which meaningfully represents the expected parameter uncertainty after measuring data for a specified experimental condition. The described approach is implemented into the open source toolbox Data2Dynamics in Matlab. The applicability of the method is demonstrated on an established systems biology model. For this demonstration, available data has been censored to simulate a setting in which parameters are not yet well determined. After determining the optimal experimental condition from the censored ones, a realistic evaluation was possible by re-introducing the censored data point corresponding to the optimal experimental condition. This provided a validation that our method is feasible in real-world applications. The approach applies to, but is not limited to, models in systems biology.

19.
BMC Infect Dis ; 22(1): 105, 2022 Jan 29.
Article En | MEDLINE | ID: mdl-35093012

BACKGROUND: Surveillance testing within healthcare facilities provides an opportunity to prevent severe outbreaks of coronavirus disease 2019 (COVID-19). However, the quantitative impact of different available surveillance strategies and their potential to decrease the frequency of outbreaks are not well-understood. METHODS: We establish an individual-based model representative of a mental health hospital yielding generalizable results. Attributes and features of this facility were derived from a prototypical hospital, which provides psychiatric, psychosomatic and psychotherapeutic treatment. We estimate the relative reduction of outbreak probability for three test strategies (entry test, once-weekly test and twice-weekly test) relative to a symptom-based baseline strategy. Based on our findings, we propose determinants of successful surveillance measures. RESULTS: Entry Testing reduced the outbreak probability by 26%, additionally testing once or twice weekly reduced the outbreak probability by 49% or 67% respectively. We found that fast diagnostic test results and adequate compliance of the clinic population are mandatory for conducting effective surveillance. The robustness of these results towards uncertainties is demonstrated via comprehensive sensitivity analyses. CONCLUSIONS: We conclude that active testing in mental health hospitals and similar facilities considerably reduces the number of COVID-19 outbreaks compared to symptom-based surveillance only.


COVID-19 , Delivery of Health Care , Disease Outbreaks , Health Facilities , Humans , SARS-CoV-2
20.
Cochrane Database Syst Rev ; 1: CD015029, 2022 01 17.
Article En | MEDLINE | ID: mdl-35037252

BACKGROUND: In response to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the impact of coronavirus disease 2019 (COVID-19), governments have implemented a variety of measures to control the spread of the virus and the associated disease. Among these, have been measures to control the pandemic in primary and secondary school settings. OBJECTIVES: To assess the effectiveness of measures implemented in the school setting to safely reopen schools, or keep schools open, or both, during the COVID-19 pandemic, with particular focus on the different types of measures implemented in school settings and the outcomes used to measure their impacts on transmission-related outcomes, healthcare utilisation outcomes, other health outcomes as well as societal, economic, and ecological outcomes.  SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and the Educational Resources Information Center, as well as COVID-19-specific databases, including the Cochrane COVID-19 Study Register and the WHO COVID-19 Global literature on coronavirus disease (indexing preprints) on 9 December 2020. We conducted backward-citation searches with existing reviews. SELECTION CRITERIA: We considered experimental (i.e. randomised controlled trials; RCTs), quasi-experimental, observational and modelling studies assessing the effects of measures implemented in the school setting to safely reopen schools, or keep schools open, or both, during the COVID-19 pandemic. Outcome categories were (i) transmission-related outcomes (e.g. number or proportion of cases); (ii) healthcare utilisation outcomes (e.g. number or proportion of hospitalisations); (iii) other health outcomes (e.g. physical, social and mental health); and (iv) societal, economic and ecological outcomes (e.g. costs, human resources and education). We considered studies that included any population at risk of becoming infected with SARS-CoV-2 and/or developing COVID-19 disease including students, teachers, other school staff, or members of the wider community.  DATA COLLECTION AND ANALYSIS: Two review authors independently screened titles, abstracts and full texts. One review author extracted data and critically appraised each study. One additional review author validated the extracted data. To critically appraise included studies, we used the ROBINS-I tool for quasi-experimental and observational studies, the QUADAS-2 tool for observational screening studies, and a bespoke tool for modelling studies. We synthesised findings narratively. Three review authors made an initial assessment of the certainty of evidence with GRADE, and several review authors discussed and agreed on the ratings. MAIN RESULTS: We included 38 unique studies in the analysis, comprising 33 modelling studies, three observational studies, one quasi-experimental and one experimental study with modelling components. Measures fell into four broad categories: (i) measures reducing the opportunity for contacts; (ii) measures making contacts safer; (iii) surveillance and response measures; and (iv) multicomponent measures. As comparators, we encountered the operation of schools with no measures in place, less intense measures in place, single versus multicomponent measures in place, or closure of schools. Across all intervention categories and all study designs, very low- to low-certainty evidence ratings limit our confidence in the findings. Concerns with the quality of modelling studies related to potentially inappropriate assumptions about the model structure and input parameters, and an inadequate assessment of model uncertainty. Concerns with risk of bias in observational studies related to deviations from intended interventions or missing data. Across all categories, few studies reported on implementation or described how measures were implemented. Where we describe effects as 'positive', the direction of the point estimate of the effect favours the intervention(s); 'negative' effects do not favour the intervention.  We found 23 modelling studies assessing measures reducing the opportunity for contacts (i.e. alternating attendance, reduced class size). Most of these studies assessed transmission and healthcare utilisation outcomes, and all of these studies showed a reduction in transmission (e.g. a reduction in the number or proportion of cases, reproduction number) and healthcare utilisation (i.e. fewer hospitalisations) and mixed or negative effects on societal, economic and ecological outcomes (i.e. fewer number of days spent in school). We identified 11 modelling studies and two observational studies assessing measures making contacts safer (i.e. mask wearing, cleaning, handwashing, ventilation). Five studies assessed the impact of combined measures to make contacts safer. They assessed transmission-related, healthcare utilisation, other health, and societal, economic and ecological outcomes. Most of these studies showed a reduction in transmission, and a reduction in hospitalisations; however, studies showed mixed or negative effects on societal, economic and ecological outcomes (i.e. fewer number of days spent in school). We identified 13 modelling studies and one observational study assessing surveillance and response measures, including testing and isolation, and symptomatic screening and isolation. Twelve studies focused on mass testing and isolation measures, while two looked specifically at symptom-based screening and isolation. Outcomes included transmission, healthcare utilisation, other health, and societal, economic and ecological outcomes. Most of these studies showed effects in favour of the intervention in terms of reductions in transmission and hospitalisations, however some showed mixed or negative effects on societal, economic and ecological outcomes (e.g. fewer number of days spent in school). We found three studies that reported outcomes relating to multicomponent measures, where it was not possible to disaggregate the effects of each individual intervention, including one modelling, one observational and one quasi-experimental study. These studies employed interventions, such as physical distancing, modification of school activities, testing, and exemption of high-risk students, using measures such as hand hygiene and mask wearing. Most of these studies showed a reduction in transmission, however some showed mixed or no effects.   As the majority of studies included in the review were modelling studies, there was a lack of empirical, real-world data, which meant that there were very little data on the actual implementation of interventions. AUTHORS' CONCLUSIONS: Our review suggests that a broad range of measures implemented in the school setting can have positive impacts on the transmission of SARS-CoV-2, and on healthcare utilisation outcomes related to COVID-19. The certainty of the evidence for most intervention-outcome combinations is very low, and the true effects of these measures are likely to be substantially different from those reported here. Measures implemented in the school setting may limit the number or proportion of cases and deaths, and may delay the progression of the pandemic. However, they may also lead to negative unintended consequences, such as fewer days spent in school (beyond those intended by the intervention). Further, most studies assessed the effects of a combination of interventions, which could not be disentangled to estimate their specific effects. Studies assessing measures to reduce contacts and to make contacts safer consistently predicted positive effects on transmission and healthcare utilisation, but may reduce the number of days students spent at school. Studies assessing surveillance and response measures predicted reductions in hospitalisations and school days missed due to infection or quarantine, however, there was mixed evidence on resources needed for surveillance. Evidence on multicomponent measures was mixed, mostly due to comparators. The magnitude of effects depends on multiple factors. New studies published since the original search date might heavily influence the overall conclusions and interpretation of findings for this review.


COVID-19 , Pandemics , Humans , Observational Studies as Topic , Quarantine , SARS-CoV-2 , Schools
...