Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(41): e2305180120, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788314

RESUMEN

Robots are notoriously difficult to design because of complex interdependencies between their physical structure, sensory and motor layouts, and behavior. Despite this, almost every detail of every robot built to date has been manually determined by a human designer after several months or years of iterative ideation, prototyping, and testing. Inspired by evolutionary design in nature, the automated design of robots using evolutionary algorithms has been attempted for two decades, but it too remains inefficient: days of supercomputing are required to design robots in simulation that, when manufactured, exhibit desired behavior. Here we show de novo optimization of a robot's structure to exhibit a desired behavior, within seconds on a single consumer-grade computer, and the manufactured robot's retention of that behavior. Unlike other gradient-based robot design methods, this algorithm does not presuppose any particular anatomical form; starting instead from a randomly-generated apodous body plan, it consistently discovers legged locomotion, the most efficient known form of terrestrial movement. If combined with automated fabrication and scaled up to more challenging tasks, this advance promises near-instantaneous design, manufacture, and deployment of unique and useful machines for medical, environmental, vehicular, and space-based tasks.

2.
Soft Robot ; 10(4): 674-686, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37083430

RESUMEN

Advances in science and engineering often reveal the limitations of classical approaches initially used to understand, predict, and control phenomena. With progress, conceptual categories must often be re-evaluated to better track recently discovered invariants across disciplines. It is essential to refine frameworks and resolve conflicting boundaries between disciplines such that they better facilitate, not restrict, experimental approaches and capabilities. In this essay, we address specific questions and critiques which have arisen in response to our research program, which lies at the intersection of developmental biology, computer science, and robotics. In the context of biological machines and robots, we explore changes across concepts and previously distinct fields that are driven by recent advances in materials, information, and life sciences. Herein, each author provides their own perspective on the subject, framed by their own disciplinary training. We argue that as with computation, certain aspects of developmental biology and robotics are not tied to specific materials; rather, the consilience of these fields can help to shed light on issues of multiscale control, self-assembly, and relationships between form and function. We hope new fields can emerge as boundaries arising from technological limitations are overcome, furthering practical applications from regenerative medicine to useful synthetic living machines.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Robótica , Computadores , Ingeniería , Medicina Regenerativa
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845026

RESUMEN

All living systems perpetuate themselves via growth in or on the body, followed by splitting, budding, or birth. We find that synthetic multicellular assemblies can also replicate kinematically by moving and compressing dissociated cells in their environment into functional self-copies. This form of perpetuation, previously unseen in any organism, arises spontaneously over days rather than evolving over millennia. We also show how artificial intelligence methods can design assemblies that postpone loss of replicative ability and perform useful work as a side effect of replication. This suggests other unique and useful phenotypes can be rapidly reached from wild-type organisms without selection or genetic engineering, thereby broadening our understanding of the conditions under which replication arises, phenotypic plasticity, and how useful replicative machines may be realized.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Reproducción Asexuada/fisiología , Reproducción/fisiología , Adaptación Fisiológica/fisiología , Animales , Inteligencia Artificial , Ingeniería Genética/métodos , Regeneración Tisular Dirigida/métodos , Fenotipo , Agregado de Proteínas/fisiología , Biología Sintética/métodos , Xenopus laevis/embriología , Xenopus laevis/metabolismo
4.
Sci Robot ; 6(52)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34043553

RESUMEN

Robot swarms have, to date, been constructed from artificial materials. Motile biological constructs have been created from muscle cells grown on precisely shaped scaffolds. However, the exploitation of emergent self-organization and functional plasticity into a self-directed living machine has remained a major challenge. We report here a method for generation of in vitro biological robots from frog (Xenopus laevis) cells. These xenobots exhibit coordinated locomotion via cilia present on their surface. These cilia arise through normal tissue patterning and do not require complicated construction methods or genomic editing, making production amenable to high-throughput projects. The biological robots arise by cellular self-organization and do not require scaffolds or microprinting; the amphibian cells are highly amenable to surgical, genetic, chemical, and optical stimulation during the self-assembly process. We show that the xenobots can navigate aqueous environments in diverse ways, heal after damage, and show emergent group behaviors. We constructed a computational model to predict useful collective behaviors that can be elicited from a xenobot swarm. In addition, we provide proof of principle for a writable molecular memory using a photoconvertible protein that can record exposure to a specific wavelength of light. Together, these results introduce a platform that can be used to study many aspects of self-assembly, swarm behavior, and synthetic bioengineering, as well as provide versatile, soft-body living machines for numerous practical applications in biomedicine and the environment.


Asunto(s)
Células Artificiales , Robótica/instrumentación , Animales , Células Artificiales/metabolismo , Materiales Biomiméticos , Movimiento Celular/fisiología , Autómata Celular , Cilios/fisiología , Diseño de Equipo , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Prueba de Estudio Conceptual , Natación/fisiología , Biología Sintética , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología , Xenopus laevis/fisiología
5.
Adv Mater ; 33(19): e2002882, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32954582

RESUMEN

One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next-generation shape changing robots are also discussed.


Asunto(s)
Biomimética , Robótica , Simulación por Computador
6.
Proc Natl Acad Sci U S A ; 117(4): 1853-1859, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932426

RESUMEN

Living systems are more robust, diverse, complex, and supportive of human life than any technology yet created. However, our ability to create novel lifeforms is currently limited to varying existing organisms or bioengineering organoids in vitro. Here we show a scalable pipeline for creating functional novel lifeforms: AI methods automatically design diverse candidate lifeforms in silico to perform some desired function, and transferable designs are then created using a cell-based construction toolkit to realize living systems with the predicted behaviors. Although some steps in this pipeline still require manual intervention, complete automation in future would pave the way to designing and deploying unique, bespoke living systems for a wide range of functions.


Asunto(s)
Algoritmos , Automatización , Bioingeniería/métodos , Simulación por Computador , Embrión no Mamífero/fisiología , Modelos Biológicos , Xenopus laevis/fisiología , Animales , Células Artificiales , Embrión no Mamífero/citología , Humanos
7.
Sci Rep ; 8(1): 16057, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30361484

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

8.
Sci Rep ; 8(1): 13934, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224743

RESUMEN

Organisms result from adaptive processes interacting across different time scales. One such interaction is that between development and evolution. Models have shown that development sweeps over several traits in a single agent, sometimes exposing promising static traits. Subsequent evolution can then canalize these rare traits. Thus, development can, under the right conditions, increase evolvability. Here, we report on a previously unknown phenomenon when embodied agents are allowed to develop and evolve: Evolution discovers body plans robust to control changes, these body plans become genetically assimilated, yet controllers for these agents are not assimilated. This allows evolution to continue climbing fitness gradients by tinkering with the developmental programs for controllers within these permissive body plans. This exposes a previously unknown detail about the Baldwin effect: instead of all useful traits becoming genetically assimilated, only traits that render the agent robust to changes in other traits become assimilated. We refer to this as differential canalization. This finding also has implications for the evolutionary design of artificial and embodied agents such as robots: robots robust to internal changes in their controllers may also be robust to external changes in their environment, such as transferal from simulation to reality or deployment in novel environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA