Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Bioconjug Chem ; 33(5): 781-787, 2022 05 18.
Article En | MEDLINE | ID: mdl-35437982

Glycan binding often mediates extracellular macromolecular recognition events. Accurate characterization of these binding interactions can be difficult because of dissociation and scrambling that occur during purification and analysis steps. Use of photocrosslinking methods has been pursued to covalently capture glycan-dependent interactions in situ; however, use of metabolic glycan engineering methods to incorporate photocrosslinking sugar analogs is limited to certain cell types. Here, we report an exo-enzymatic labeling method to add a diazirine-modified sialic acid (SiaDAz) to cell surface glycoconjugates. The method involves the chemoenzymatic synthesis of diazirine-modified CMP-sialic acid (CMP-SiaDAz), followed by sialyltransferase-catalyzed addition of SiaDAz to desialylated cell surfaces. Cell surface SiaDAzylation is compatible with multiple cell types and is facilitated by endogenous extracellular sialyltransferase activity present in Daudi B cells. This method for extracellular addition of α2-6-linked SiaDAz enables UV-induced crosslinking of CD22, demonstrating the utility for covalent capture of glycan-mediated binding interactions.


Diazomethane , N-Acetylneuraminic Acid , Diazomethane/chemistry , Glycoproteins/chemistry , N-Acetylneuraminic Acid/chemistry , Polysaccharides/chemistry , Sialic Acids/chemistry , Sialyltransferases/chemistry
2.
Biomolecules ; 11(4)2021 04 04.
Article En | MEDLINE | ID: mdl-33916555

Biosynthesis of silver nanoparticles using beneficial Trichoderma harzianum is a simple, eco-friendly and cost-effective route. Secondary metabolites secreted by T. harzianum act as capping and reducing agents that can offer constancy and can contribute to biological activity. The present study aimed to synthesize silver nanoparticles using T. harzianum cell filtrate and investigate different bioactive metabolites based on LC-MS/MS analysis. The synthesized silver nanoparticles (AgNPs) from T. harzianum were characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectrometry (FT-IR), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The surface plasmon resonance of synthesized particles formed a peak centered near 438 nm. The DLS study determined the average size of AgNPs to be 21.49 nm. The average size of AgNPs was measured to be 72 nm by SEM. The cubic crystal structure from XRD analysis confirmed the synthesized particles as silver nanoparticles. The AgNPs exhibited remarkable antioxidant properties, as determined by DPPH and ferric reducing antioxidant power (FRAP) assay. The AgNPs also exhibited broad-spectrum antibacterial activity against two Gram-positive bacteria (S. aureus and B. subtilis) and two Gram-negative bacteria (E. coli and R. solanacearum). The minimum inhibitory concentration (MIC) of AgNPs towards bacterial growth was evaluated. The antibacterial activity of AgNPs was further confirmed by fluorescence microscopy and SEM analysis.


Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Metal Nanoparticles/toxicity , Silver/chemistry , Trichoderma/metabolism , Anti-Bacterial Agents/chemistry , Biomass , Green Chemistry Technology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Particle Size , Plant Extracts/chemistry , Trichoderma/chemistry
3.
Sci Rep ; 10(1): 16438, 2020 10 02.
Article En | MEDLINE | ID: mdl-33009462

Amomum nilgiricum is one of the plant species reported from Western Ghats of India, belonging to the family Zingiberaceae, with ethno-botanical values, and is well-known for their ethno medicinal applications. In the present investigation, ethyl acetate and methanol extracts of A. nilgiricum were analyzed by Fourier transform infrared spectrometer (FTIR) and gas chromatography-mass spectrometry (GC-MS) to identify the important functional groups and phytochemical constituents. The FTIR spectra revealed the occurrence of functional characteristic peaks of aromatic amines, carboxylic acids, ketones, phenols and alkyl halides group from leaf and rhizome extracts. The GC-MS analysis of ethyl acetate and methanol extracts from leaves, and methanol extract from rhizomes of A. nilgiricum detected the presence of 25 phytochemical compounds. Further, the leaf and rhizome extracts of A. nilgiricum showed remarkable antibacterial and antifungal activities at 100 mg/mL. The results of DPPH and ferric reducing antioxidant power assay recorded maximum antioxidant activity in A. nilgiricum methanolic leaf extract. While, ethyl acetate leaf extract exhibited maximum α-amylase inhibition activity, followed by methanolic leaf extract exhibiting aldose reductase inhibition. Subsequently, these 25 identified compounds were analyzed for their bioactivity through in silico molecular docking studies. Results revealed that among the phytochemical compounds identified, serverogenin acetate might have maximum antibacterial, antifungal, antiviral, antioxidant and antidiabetic properties followed by 2,4-dimethyl-1,3-dioxane and (1,3-13C2)propanedioic acid. To our best knowledge, this is the first description on the phytochemical constituents of the leaves and rhizomes of A. nilgiricum, which show pharmacological significance, as there has been no literature available yet on GC-MS and phytochemical studies of this plant species. The in silico molecular docking of serverogenin acetate was also performed to confirm its broad spectrum activities based on the binding interactions with the antibacterial, antifungal, antiviral, antioxidant and antidiabetic target proteins. The results of the present study will create a way for the invention of herbal medicines for several ailments by using A. nilgiricum plants, which may lead to the development of novel drugs.


Acetates/chemistry , Amomum/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Antioxidants/chemistry , Gas Chromatography-Mass Spectrometry/methods , India , Methanol/chemistry , Molecular Docking Simulation/methods , Phenols/chemistry , Phytochemicals/chemistry , Plants, Medicinal/chemistry
4.
Nat Prod Res ; 34(11): 1630-1635, 2020 Jun.
Article En | MEDLINE | ID: mdl-30587035

The pigment was extracted from Penicillium aculeatum, purified and characterized as Ankaflavin by spectroscopic analysis. The stability of the pigment was determined under various conditions and was found to possess high stability. The cytotoxicity property of the purified pigment was determined by MTT assay in MCF-7, HCT116 and PC-3 and the studies were compared with its activity in CHOK1 cells. In MCF-7 and in CHOK 1 cells, the pigment exhibited very less toxicity. However, significant cytotoxicity was observed in HCT116 and PC-3 cells with IC50 of 162 µg mL-1 and 85 µg mL-1 for HCT116 and PC-3 cells respectively. In vitro toxicity was tested by haemolysis assay and MTT assay in HEK 293 cells. The pigment showed least cytotoxicity (<5%) at 160 and 320 µg mL-1 concentrations HEK 293 cells and negligible (<5%) toxicity on human erythrocytes at 160 and 320 µg mL-1, the highest concentrations tested.


Antineoplastic Agents/pharmacology , Flavins/chemistry , Flavins/pharmacology , Penicillium/chemistry , Animals , Antineoplastic Agents/chemistry , CHO Cells , Cricetulus , Drug Screening Assays, Antitumor , Flavins/isolation & purification , HCT116 Cells , HEK293 Cells , Hemolysis/drug effects , Humans , MCF-7 Cells , Penicillium/isolation & purification , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification , Pigments, Biological/pharmacology
5.
Interface Focus ; 9(2): 20180076, 2019 Apr 06.
Article En | MEDLINE | ID: mdl-30842875

Cholera toxin (CT) is a secreted bacterial toxin that binds to glycoconjugate receptors on the surface of mammalian cells, enters mammalian cells through endocytic mechanisms and intoxicates mammalian cells by activating cytosolic adenylate cyclase. CT recognizes cell surface receptors through its B subunit (CTB). While the ganglioside GM1 has been historically described as the sole receptor, CTB is also capable of binding to fucosylated glycoconjugates, and fucosylated molecules have been shown to play a functional role in host cell intoxication by CT. Here, we use colonic epithelial and respiratory epithelial cell lines to examine how two types of CT receptors-gangliosides and fucosylated glycoconjugates-contribute to CTB internalization. We show that fucosylated glycoconjugates contribute to CTB binding to and internalization into host cells, even when the ganglioside GM1 is present. The contributions of the two classes of receptors to CTB internalization depend on cell type. Additionally, in a cell line that harbours both classes of receptors, gangliosides dictate the efficiency of CTB internalization. Together, the results lend support to the idea that fucosylated glycoconjugates play a functional role in CTB internalization, and suggest that CT internalization depends on both receptor identity and cell type.

6.
PLoS Pathog ; 14(2): e1006862, 2018 02.
Article En | MEDLINE | ID: mdl-29432456

Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors via its B subunit (CTB). We have recently shown that in addition to the previously described binding partner ganglioside GM1, CTB binds to fucosylated proteins. Using flow cytometric analysis of primary human jejunal epithelial cells and granulocytes, we now show that CTB binding correlates with expression of the fucosylated Lewis X (LeX) glycan. This binding is competitively blocked by fucosylated oligosaccharides and fucose-binding lectins. CTB binds the LeX glycan in vitro when this moiety is linked to proteins but not to ceramides, and this binding can be blocked by mAb to LeX. Inhibition of glycosphingolipid synthesis or sialylation in GM1-deficient C6 rat glioma cells results in sensitization to CT-mediated intoxication. Finally, CT gavage produces an intact diarrheal response in knockout mice lacking GM1 even after additional reduction of glycosphingolipids. Hence our results show that CT can induce toxicity in the absence of GM1 and support a role for host glycoproteins in CT intoxication. These findings open up new avenues for therapies to block CT action and for design of detoxified enterotoxin-based adjuvants.


Cholera Toxin/toxicity , G(M1) Ganglioside/physiology , Animals , Cells, Cultured , G(M1) Ganglioside/metabolism , Glycosylation , HL-60 Cells , Humans , Jurkat Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Rats , Polypeptide N-acetylgalactosaminyltransferase
7.
J Biol Chem ; 292(23): 9637-9651, 2017 06 09.
Article En | MEDLINE | ID: mdl-28424265

GNE (UDP-GlcNAc 2-epimerase/ManNAc kinase) myopathy is a rare muscle disorder associated with aging and is related to sporadic inclusion body myositis, the most common acquired muscle disease of aging. Although the cause of sporadic inclusion body myositis is unknown, GNE myopathy is associated with mutations in GNE. GNE harbors two enzymatic activities required for biosynthesis of sialic acid in mammalian cells. Mutations to both GNE domains are linked to GNE myopathy. However, correlation between mutation-associated reductions in sialic acid production and disease severity is imperfect. To investigate other potential effects of GNE mutations, we compared sialic acid production in cell lines expressing wild type or mutant forms of GNE. Although we did not detect any differences attributable to disease-associated mutations, lectin binding and mass spectrometry analysis revealed that GNE deficiency is associated with unanticipated effects on the structure of cell-surface glycans. In addition to exhibiting low levels of sialylation, GNE-deficient cells produced distinct N-linked glycan structures with increased branching and extended poly-N-acetyllactosamine. GNE deficiency may affect levels of UDP-GlcNAc, a key metabolite in the nutrient-sensing hexosamine biosynthetic pathway, but this modest effect did not fully account for the change in N-linked glycan structure. Furthermore, GNE deficiency and glucose supplementation acted independently and additively to increase N-linked glycan branching. Notably, N-linked glycans produced by GNE-deficient cells displayed enhanced binding to galectin-1, indicating that changes in GNE activity can alter affinity of cell-surface glycoproteins for the galectin lattice. These findings suggest an unanticipated mechanism by which GNE activity might affect signaling through cell-surface receptors.


Acetylglucosamine/biosynthesis , Cell Membrane/metabolism , Polysaccharides/biosynthesis , Sialic Acids/biosynthesis , Acetylglucosamine/genetics , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Cell Line , Cell Membrane/genetics , Humans , Mutation , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/metabolism , Polysaccharides/genetics , Protein Domains
8.
Genes Cancer ; 2(11): 1044-50, 2011 Nov.
Article En | MEDLINE | ID: mdl-22737270

The inhibitor of κ B kinase-ε (IKKε), a breast cancer oncogene, functions as a transforming kinase by activating NF-κB. IKKε is often elevated in breast cancers in the absence of any gene amplification. Because Akt-mediated transformation was shown to require IKKε, we examined if Akt regulates IKKε level in breast cancer cells. Knockdown of Akt2, but not other Akt isoforms, decreased the basal and TNF-induced IKKε protein and mRNA level, and overexpression of Akt2 in MDA-MB-231 cells increased IKKε level. The decrease in IKKε level by Akt2 knockdown was not only restricted to MDA-MB-231 cells but was also observed in several other breast cancer cells, including HCC1937 and MCF-10CA1a cells. Knockdown of p65/RelA subunit of NF-κB decreased IKKε level and attenuated the increase in IKKε caused by Akt2 overexpression, suggesting that Akt2-mediated induction of IKKε involves NF-κB activation. Silencing of IKKε also decreased long-term clonogenic survival of Akt2-overexpressing MDA-MB-231 cells. Taken together, these results demonstrate for the first time that IKKε functions downstream of Akt2 to promote breast cancer cell survival.

9.
J Nucleic Acids ; 20102010 Aug 08.
Article En | MEDLINE | ID: mdl-20811617

Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

10.
Int J Oncol ; 36(4): 883-8, 2010 Apr.
Article En | MEDLINE | ID: mdl-20198332

Protein kinase C epsilon (PKCepsilon) is a transforming oncogene and an important anti-apoptotic protein. We previously demonstrated that overexpression of PKCepsilon in MCF-7 breast cancer cells caused an increase in anti-apoptotic Bcl-2 and a decrease in pro-apoptotic Bid, attenuating tumor necrosis factor-alpha (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. The objective of our present study was to determine the mode of induction of Bcl-2 by PKCepsilon in breast cancer cells. siRNA silencing of either PKCepsilon or Akt in MCF-7 cells, which overexpress Akt, decreased Bcl-2 protein and mRNA levels. However, knockdown of PKCepsilon, but not Akt, led to the decrease in Bcl-2 at both protein and mRNA levels in MDA-MB-231 breast cancer cells, which overexpress PKCepsilon but contain little constitutively-active Akt. Knockdown of PKCepsilon decreased phosphorylation of cAMP response element-binding protein (CREB) at Ser133 in MDA-MB-231 cells, and depletion of CREB by siRNA decreased Bcl-2 at both the protein and mRNA levels. In addition, knockdown of CREB sensitized MDA-MB-231 cells to TRAIL-mediated cell death. These results suggest that PKCepsilon regulates Bcl-2 induction through activation of the transcription factor CREB.


Breast Neoplasms/enzymology , Cyclic AMP Response Element-Binding Protein/metabolism , Protein Kinase C-epsilon/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cyclic AMP Response Element-Binding Protein/genetics , Female , Humans , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , RNA Interference , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Cells, Cultured , Up-Regulation
11.
Langmuir ; 23(20): 10230-4, 2007 Sep 25.
Article En | MEDLINE | ID: mdl-17722943

In this work, we applied high-resolution atomic force microscopy (AFM) to identify and characterize similarities and differences in the spore surface morphology of strains from four species of Bacilli: B. anthracis, B. cereus, B. pumilis, and B. subtilis. Common features of the examined spores in the dry state included ridges that spanned the long axis of each spore, and nanometer-scale fine rodlets that covered the entire spore surface. However, important differences in these features between species permitted them to be distinguished by AFM. Specifically, each species possessed significant variation in ridge architecture, and the rodlet width in B. anthracis was significantly less than that of the other species. To characterize similarities and differences within a species, we examined three B. subtilis strains. The ridge patterns among the three strains were largely the same; however, we detected significant differences in the ridge dimensions. Taken together, these experiments provide important information about natural variation in spore surface morphology, define structural features that can serve as species- and strain-specific signatures, and give insight into the dynamics of spore coat flexibility and its role during spore dormancy and germination.


Bacillus/classification , Spores, Bacterial/classification , Bacillus/physiology , Microscopy, Atomic Force , Species Specificity , Surface Properties
...