Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 44(11): 8635-8656, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34406936

RESUMEN

Classification of 3D objects - the selection of a category in which each object belongs - is of great interest in the field of machine learning. Numerous researchers use deep neural networks to address this problem, altering the network architecture and representation of the 3D shape used as an input. To investigate the effectiveness of their approaches, we conduct an extensive survey of existing methods and identify common ideas by which we categorize them into a taxonomy. Second, we evaluate 11 selected classification networks on two 3D object datasets, extending the evaluation to a larger dataset on which most of the selected approaches have not been tested yet. For this, we provide a framework for converting shapes from common 3D mesh formats into formats native to each network, and for training and evaluating different classification approaches on this data. Despite being partially unable to reach the accuracies reported in the original papers, we compare the relative performance of the approaches as well as their performance when changing datasets as the only variable to provide valuable insights into performance on different kinds of data. We make our code available to simplify running training experiments with multiple neural networks with different prerequisites.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Aprendizaje Automático
2.
Opt Express ; 29(5): 7568-7588, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726256

RESUMEN

Volumetric light transport is a pervasive physical phenomenon, and therefore its accurate simulation is important for a broad array of disciplines. While suitable mathematical models for computing the transport are now available, obtaining the necessary material parameters needed to drive such simulations is a challenging task: direct measurements of these parameters from material samples are seldom possible. Building on the inverse scattering paradigm, we present a novel measurement approach which indirectly infers the transport parameters from extrinsic observations of multiple-scattered radiance. The novelty of the proposed approach lies in replacing structured illumination with a structured reflector bonded to the sample, and a robust fitting procedure that largely compensates for potential systematic errors in the calibration of the setup. We show the feasibility of our approach by validating simulations of complex 3D compositions of the measured materials against physical prints, using photo-polymer resins. As presented in this paper, our technique yields colorspace data suitable for accurate appearance reproduction in the area of 3D printing. Beyond that, and without fundamental changes to the basic measurement methodology, it could equally well be used to obtain spectral measurements that are useful for other application areas.

3.
IEEE Trans Vis Comput Graph ; 26(4): 1821-1840, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30418911

RESUMEN

Two decades have passed since the introduction of Markov chain Monte Carlo (MCMC) into light transport simulation by Veach and Guibas, and numerous follow-up works have been published since then. However, up until now no survey has attempted to cover the majority of these methods. The aim of this paper is therefore to offer a first comprehensive survey of MCMC algorithms for light transport simulation. The methods presented in this paper are categorized by their objectives and properties, while we point out their strengths and weaknesses. We discuss how the methods handle the main issues of MCMC and how they could be combined or improved in the near future. To make the paper suitable for readers unacquainted with MCMC methods, we include an introduction to general MCMC and its demonstration on a simple example.

4.
IEEE Trans Vis Comput Graph ; 20(6): 944-54, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26357310

RESUMEN

Thanks to its ability to improve the realism of computer-generated imagery, the use of global illumination has recently become widespread among digital lighting artists. It remains unclear, though, what impact it has on the lighting design workflows, especially for novice users. In this paper we present a user study which investigates the use of global illumination, large area lights, and non-physical fill lights in lighting design tasks, where 26 novice subjects design lighting with these tools. The collected data suggest that global illumination is not significantly harder to control for novice users that direct illumination, and when given the possibility, most users opt to use it in their designs. The use of global illumination together with large area lights leads to simpler lighting setups with fewer non-physical fill lights. Interestingly, global illumination does not supersede fill lights: users still include them into their globally illuminated lighting setups. We believe that our results will find use in the development of lighting design tools for non-expert users.

5.
IEEE Comput Graph Appl ; 33(6): 58-68, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24808131

RESUMEN

Progressive rendering is becoming a popular alternative to precomputational approaches to appearance design. However, progressive algorithms create images exhibiting visual artifacts at early stages. A user study investigated these artifacts' effects on user performance in appearance design tasks. Novice and expert subjects performed lighting and material editing tasks with four algorithms: random path tracing, quasirandom path tracing, progressive photon mapping, and virtual-point-light rendering. Both the novices and experts strongly preferred path tracing to progressive photon mapping and virtual-point-light rendering. None of the participants preferred random path tracing to quasirandom path tracing or vice versa; the same situation held between progressive photon mapping and virtual-point-light rendering. The user workflow didn’t differ significantly with the four algorithms. The Web Extras include a video showing how four progressive-rendering algorithms converged (at http://youtu.be/ck-Gevl1e9s), the source code used, and other supplementary materials.

7.
IEEE Trans Vis Comput Graph ; 11(5): 550-61, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16144252

RESUMEN

In this paper, we present a ray tracing-based method for accelerated global illumination computation in scenes with low-frequency glossy BRDFs. The method is based on sparse sampling, caching, and interpolating radiance on glossy surfaces. In particular, we extend the irradiance caching scheme proposed by Ward et al. to cache and interpolate directional incoming radiance instead of irradiance. The incoming radiance at a point is represented by a vector of coefficients with respect to a hemispherical or spherical basis. The surfaces suitable for interpolation are selected automatically according to the roughness of their BRDF. We also propose a novel method for computing translational radiance gradient at a point.


Asunto(s)
Algoritmos , Gráficos por Computador , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Almacenamiento y Recuperación de la Información/métodos , Iluminación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA