Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1131: 547-604, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31646526

RESUMEN

Ca2+ release activated Ca2+ (CRAC) channels represent a primary pathway for Ca2+ to enter non-excitable cells. The two key players in this process are the stromal interaction molecule (STIM), a Ca2+ sensor embedded in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel located in the plasma membrane. Upon depletion of the internal Ca2+ stores, STIM is activated, oligomerizes, couples to and activates Orai. This review provides an overview of novel findings about the CRAC channel activation mechanisms, structure and gating. In addition, it highlights, among diverse STIM and Orai mutants, also the disease-related mutants and their implications.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Membrana Celular , Animales , Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/sangre , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Mutación , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
2.
Sci Signal ; 12(608)2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31744929

RESUMEN

The stromal interaction molecule 1 (STIM1) has two important functions, Ca2+ sensing within the endoplasmic reticulum and activation of the store-operated Ca2+ channel Orai1, enabling plasma-membrane Ca2+ influx. We combined molecular dynamics (MD) simulations with live-cell recordings and determined the sequential Ca2+-dependent conformations of the luminal STIM1 domain upon activation. Furthermore, we identified the residues within the canonical and noncanonical EF-hand domains that can bind to multiple Ca2+ ions. In MD simulations, a single Ca2+ ion was sufficient to stabilize the luminal STIM1 complex. Ca2+ store depletion destabilized the two EF hands, triggering disassembly of the hydrophobic cleft that they form together with the stable SAM domain. Point mutations associated with tubular aggregate myopathy or cancer that targeted the canonical EF hand, and the hydrophobic cleft yielded constitutively clustered STIM1, which was associated with activation of Ca2+ entry through Orai1 channels. On the basis of our results, we present a model of STIM1 Ca2+ binding and refine the currently known initial steps of STIM1 activation on a molecular level.


Asunto(s)
Calcio/metabolismo , Simulación de Dinámica Molecular , Proteínas de Neoplasias/química , Dominios Proteicos , Desplegamiento Proteico , Molécula de Interacción Estromal 1/química , Algoritmos , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Motivos EF Hand , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Confocal , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Ratas , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
3.
Eur Biophys J ; 48(5): 425-445, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30903264

RESUMEN

Ca2+ ions represent versatile second messengers that regulate a huge diversity of processes throughout the cell's life. One prominent Ca2+ entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) ion channel. It is fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM1) and Orai. STIM1 is a Ca2+ sensor located in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel embedded in the plasma membrane. Ca2+ store-depletion leads initially to the activation of STIM1 which subsequently activates Orai channels via direct binding. Authentic CRAC channel hallmarks and biophysical characteristics include high Ca2+ selectivity with a reversal potential in the range of + 50 mV, small unitary conductance, fast Ca2+-dependent inactivation and enhancements in currents upon the switch from a Na+-containing divalent-free to a Ca2+-containing solution. This review provides an overview on the critical determinants and structures within the STIM1 and Orai proteins that establish these prominent CRAC channel characteristics.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio Activados por la Liberación de Calcio/química , Humanos , Activación del Canal Iónico
4.
Cell Calcium ; 79: 57-67, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30831274

RESUMEN

Calcium signalling through store-operated calcium (SOC) entry is of crucial importance for T-cell activation and the adaptive immune response. This entry occurs via the prototypic Ca2+ release-activated Ca2+ (CRAC) channel. STIM1, a key molecular component of this process, is located in the membrane of the endoplasmic reticulum (ER) and is initially activated upon Ca2+ store depletion. This activation signal is transmitted to the plasma membrane via a direct physical interaction that takes place between STIM1 and the highly Ca2+-selective ion channel Orai1. The activation of STIM1 induces an extended cytosolic conformation. This, in turn, exposes the CAD/SOAR domain and leads to the formation of STIM1 oligomers. In this study, we focused on a small helical segment (STIM1 α3, aa 400-403), which is located within the CAD/SOAR domain. We determined this segment's specific functional role in terms of STIM1 activation and Orai1 gating. The STIM1 α3 domain appears not essential for STIM1 to interact with Orai1. Instead, it represents a key domain that conveys STIM1 interaction into Orai1 channel gating. The results of cysteine crosslinking experiments revealed the close proximity of STIM1 α3 to a region within Orai1, which was located at the cytosolic extension of transmembrane helix 3, forming a STIM1-Orai1 gating interface (SOGI). We suggest that the interplay between STIM1 α3 and Orai1 TM3 allows STIM1 coupling to be transmitted into physiological CRAC channel activation.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Calcio/metabolismo , Células Cultivadas , Clonación Molecular , Células HEK293 , Humanos , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteína ORAI1/deficiencia , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/deficiencia , Molécula de Interacción Estromal 1/genética
5.
J Biol Chem ; 293(4): 1271-1285, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29237733

RESUMEN

Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73-91; Orai3 amino acids 48-65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner.


Asunto(s)
Canales de Calcio/química , Proteína ORAI1/química , Canales de Calcio/genética , Canales de Calcio/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
6.
J Biol Chem ; 293(4): 1259-1270, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29237734

RESUMEN

Calcium (Ca2+) is an essential second messenger required for diverse signaling processes in immune cells. Ca2+ release-activated Ca2+ (CRAC) channels represent one main Ca2+ entry pathway into the cell. They are fully reconstituted via two proteins, the stromal interaction molecule 1 (STIM1), a Ca2+ sensor in the endoplasmic reticulum, and the Ca2+ ion channel Orai in the plasma membrane. After Ca2+ store depletion, STIM1 and Orai couple to each other, allowing Ca2+ influx. CRAC-/STIM1-mediated Orai channel currents display characteristic hallmarks such as high Ca2+ selectivity, an increase in current density when switching from a Ca2+-containing solution to a divalent-free Na+ one, and fast Ca2+-dependent inactivation. Here, we discovered several constitutively active Orai1 and Orai3 mutants, containing substitutions in the TM3 and/or TM4 regions, all of which displayed a loss of the typical CRAC channel hallmarks. Restoring authentic CRAC channel activity required both the presence of STIM1 and the conserved Orai N-terminal portion. Similarly, these structural requisites were found in store-operated Orai channels. Key molecular determinants within the Orai N terminus that together with STIM1 maintained the typical CRAC channel hallmarks were distinct from those that controlled store-dependent Orai activation. In conclusion, the conserved portion of the Orai N terminus is essential for STIM1, as it fine-tunes the open Orai channel gating, thereby establishing authentic CRAC channel activity.


Asunto(s)
Canales de Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio , Activación del Canal Iónico , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Canales de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/genética , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Dominios Proteicos , Molécula de Interacción Estromal 1/genética
7.
RNA ; 21(12): 2088-102, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26447184

RESUMEN

Trypanosoma brucei is the causative agent of the human and veterinarian diseases African sleeping sickness and nagana. A majority of its mitochondrial-encoded transcripts undergo RNA editing, an essential process of post-transcriptional uridine insertion and deletion to produce translatable mRNA. Besides the well-characterized RNA editing core complex, the mitochondrial RNA-binding 1 (MRB1) complex is one of the key players. It comprises a core complex of about six proteins, guide RNA-associated proteins (GAPs) 1/2, which form a heterotetramer that binds and stabilizes gRNAs, plus MRB5390, MRB3010, and MRB11870, which play roles in initial stages of RNA editing, presumably guided by the first gRNA:mRNA duplex in the case of the latter two proteins. To better understand all functions of the MRB1 complex, we performed a functional analysis of the MRB8620 core subunit, the only one not characterized so far. Here we show that MRB8620 plays a role in RNA editing in both procyclic and bloodstream stages of T. brucei, which reside in the tsetse fly vector and mammalian circulatory system, respectively. While RNAi silencing of MRB8620 does not affect procyclic T. brucei fitness when grown in glucose-containing media, it is somewhat compromised in cells grown in the absence of this carbon source. MRB8620 is crucial for integrity of the MRB1 core, such as its association with GAP1/2, which presumably acts to deliver gRNAs to this complex. In contrast, GAP1/2 is not required for the fabrication of the MRB1 core. Disruption of the MRB1 core assembly is followed by the accumulation of mRNAs associated with GAP1/2.


Asunto(s)
Proteínas Mitocondriales/fisiología , Proteínas Protozoarias/fisiología , Edición de ARN , Trypanosoma brucei brucei/genética , Línea Celular , Mitocondrias , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trypanosoma brucei brucei/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA