Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(11): 18909-18915, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859037

RESUMEN

A new type of terahertz source containing only two optical elements - a volume phase holographic grating, and a semiconductor nonlinear slab - is proposed. The setup does not require any microstructuring, has only one diffraction order, and can be scaled to large pump sizes without any principal limitations. Furthermore, it can be easily adapted to different pump wavelengths and THz phase-matching frequencies. The Fresnel loss at the boundary of the materials can be significant at conventional pump polarizations (s-pol), but a single-layer anti-reflection (AR) coating can reduce it. Pumping such a setup with polarization in the dispersion plane (p-pol, TM mode) can reduce the effective nonlinear polarization and consequently the terahertz generation efficiency. However, in the absence of AR coating, this reduction is overcompensated by the reduced Fresnel loss.

2.
Opt Express ; 32(5): 7030-7043, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439394

RESUMEN

Open-aperture Z-scan measurements have been carried out to investigate the three-photon (3 PA) and four-photon absorption (4 PA) coefficients at 800 nm and 1030 nm wavelengths, respectively in congruent and stoichiometric lithium niobate (cLN, sLN) with different concentrations of Mg doping. The laser pulse duration at the two wavelengths were 40 and 190 fs. The peak intensity inside the crystals varied between approximately 110 and 550 GW/cm2. The 3 PA and 4 PA coefficients were evaluated using a theoretical model and the results suggest that their minima are at or around the Mg doping level corresponding to the threshold for suppressing photo-refraction for both cLN and sLN. This result can be attributed to the contribution of crystal defects to the 3 PA and 4 PA processes. Furthermore, the 4 PA at 1030 nm exhibited greater nonlinear absorption than the 3 PA at 800 nm under the same intensity level. Possible reasons for this unexpected behavior are discussed. Overall, comparing the 3 PA and 4 PA values of these crystals will enable for selection of the optimum composition of LN crystal for efficient THz generation and for other nonlinear optical processes requiring high pump intensities.

3.
Opt Lett ; 48(14): 3777-3780, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37450748

RESUMEN

A novel, to the best of our knowledge, compact, imaging-free, tilted-pulse-front (TPF) pumped terahertz (THz) source based on a LiNbO3 slab with a small wedge angle (< 8°) and with an echelon microstructure on its input surface has been demonstrated. Single-cycle pulses of more than 40-µJ energy and 0.28-THz central frequency have been generated by 100-mJ, 400-fs pump pulses with 4.1 × 10-4 efficiency and excellent focusability. The peak electric field value focused by a single parabolic mirror was 540 kV/cm. Using 200-fs-long pump pulses, the efficiency increased to 1.0 × 10-3, which is in qualitative agreement with the measured increased diffraction efficiency in the velocity matched diffraction order. A further ∼8x increase in efficiency is expected by pumping a cryogenically cooled wedged echelon with appropriate step sizes, better microstructured surface quality, and antireflection coating on both the input and the output sides. THz generation efficiency maxima were found at ∼2.7-mm crystal thickness for both pump pulse durations. The focused THz beam was diffraction limited within 5% accuracy. Compared to conventional THz sources, this setup is very compact, easy to align, can be pumped by larger beam sizes maintaining the high THz generation efficiency, and produces THz pulses with superior focusability.


Asunto(s)
Diagnóstico por Imagen , Electricidad , Frecuencia Cardíaca
4.
Opt Express ; 30(25): 45246-45258, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522931

RESUMEN

In recent years several microstructured lithium niobate THz pulse source were suggested for high-energy applications. Two types of those, the reflective and the transmissive nonlinear slab are adopted here for semiconductors. These new sources are scalable both in THz energy and size. Furthermore, they can outperform the already demonstrated contact grating source in diffraction and THz generation efficiency. Compared to the lithium niobate sources, they are more feasible, thanks to the easier manufacturing and the longer pump wavelength. They can produce intense, nearly single-cycle THz pulses at higher frequencies. With 20 mJ pumping at 1.8 µm wavelength, 45 µJ THz energy, and 17 MV/cm focused peak electric field can be expected at 3 THz phase matching frequency from the transmissive nonlinear echelon slab setup consisting of a 4 mm thick structured plan-parallel gallium phosphide crystal.

5.
Opt Express ; 30(15): 27602-27608, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236928

RESUMEN

We have developed a waveguide structure for electron acceleration using a few µJ energy THz pulse. The metallic device focuses the incoming linearly polarized nearly single-cycle THz pulse, hence increasing the peak electric field strength. We experimentally verified the gain and the temporal profile of the electric field in the structure using electro-optic sampling technique. The acceleration of the electron bunch from rest up to 8 keV was predicted using single-cycle THz pulses with µJ-energy level.

6.
Opt Express ; 30(3): 4434-4443, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209681

RESUMEN

A novel THz source, based on optical rectification in LiNbO3 using the tilted-pulse-front technique, is proposed and experimentally demonstrated. The pulse-front tilt is introduced by a volume phase holographic grating, efficiently used at perpendicular incidence in transmission, and the THz pulses are produced in a LiNbO3 plane-parallel nonlinear echelon slab, arranged parallel to the grating. As a unique feature, the entire setup has a plane-parallel, transmission-type configuration, which straightforwardly enables distortion-free scaling to large sizes, high pulse energies and high THz field strengths. The possibility of operating the setup at cryogenic temperature for increased THz generation efficiency is also investigated. Calculations predict efficiencies of 95% for diffraction and 2% for THz generation at room temperature with a refractive-index-matching liquid between the grating and the echelon slab.

7.
Opt Express ; 28(23): 34320-34327, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182904

RESUMEN

A new type of THz source, working in reflection geometry, is proposed, where the pulse-front-tilt is introduced by a periodically micro-structured metal profile. For optical coupling, high refractive index nanocomposite fluid is used between the nonlinear optical material and the structured metal surface. Numerical simulations predict ∼87 and ∼85% optimized diffraction efficiencies for lithium niobate and lithium tantalate at 1030 and 800 nm pump wavelengths. The largest diffraction efficiencies can be achieved for a larger refractive index of the nanocomposite fluid than the index of the nonlinear material, for both cases. THz generation efficiencies of ∼3 and ∼1% are predicted for lithium niobate and lithium tantalate, respectively.

8.
Opt Express ; 27(5): 7762-7775, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876334

RESUMEN

Recently a hybrid-type terahertz (THz) pulse source was proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a nonlinear crystal with a transmission stair-step echelon of period in the hundred-micrometer range etched into the front face. The tilt angle introduced by the conventional tilted-pulse-front setup (pre-tilt) was chosen to be equal to the tilt-angle needed inside the nonlinear crystal (62° for lithium niobate (LN)) in order to fulfill velocity-matching. In this case, plane-parallel nonlinear optical crystals can be used. The possibility of using a plane-parallel nonlinear optical crystal for producing good-quality, symmetric THz beams was considered the most important advantage of this setup. In the present paper, a thorough numerical investigation of a modified version of that setup is presented. In the new version, the tilted pulse-front is created by a transmission grating without any imaging optics, and a wedged nonlinear optical crystal with a small wedge angle is supposed. According to a 1D numerical code, significantly higher THz generation efficiency can be achieved with a transmission stair-step echelon-faced nonlinear crystal having a 5 - 15-degree wedge angle than with a plane-parallel one or with the conventional tilted-pulse-front setup. Because of the spatially-dependent group-delay dispersion introduced by the transmission grating, a small wedge in the nonlinear crystal improves the spatial homogeneity of the THz-generation process, resulting in higher efficiencies and better beam profiles. At 100 K temperature, and by using 800 nm pump pulses with 20 mJ pulse energy, 100 fs pulse length and 8 mm beam spot radius, approximately 4.5% conversion efficiency and close to 1 mJ terahertz pulse energy can be reached with the newly-proposed setup.

9.
Opt Lett ; 44(4): 1023-1026, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30768046

RESUMEN

A new type of tilted-pulse-front pumped terahertz (THz) source has been demonstrated, which is based on a LiNbO3plane-parallel slab with an echelon structure on its input surface. Single-cycle pulses of 1 µJ energy and 0.30 THz central frequency have been generated with 5×10-4 efficiency from such a source. One order-of-magnitude increase in efficiency is expected by pumping a cryogenically cooled echelon of increased size and thickness with a Ti:sapphire laser. The use of a plane-parallel nonlinear optical crystal slab enables straightforward scaling to high THz pulse energies and the production of a symmetric THz beam with a uniform pulse shape for good focusability and high field strength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...