Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(4): e1011306, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37018381

RESUMEN

As a facultative intracellular pathogen, Salmonella enterica serovar Typhimurium is one of the leading causes of food-borne diseases in humans. With the ingestion of fecal contaminated food or water, S. Typhimurium reaches the intestine. Here, the pathogen efficiently invades intestinal epithelial cells of the mucosal epithelium by the use of multiple virulence factors. Recently, chitinases have been described as emerging virulence factors of S. Typhimurium that contribute to the attachment and invasion of the intestinal epithelium, prevent immune activation, and modulate the host glycome. Here we find that the deletion of chiA leads to diminished adhesion and invasion of polarized intestinal epithelial cells (IEC) compared to wild-type S. Typhimurium. Interestingly, no apparent impact on interaction was detected when using non-polarized IEC or HeLa epithelial cells. In concordance, we demonstrate that chiA gene and ChiA protein expression was solely induced when bacteria gain contact with polarized IEC. The induction of chiA transcripts needs the specific activity of transcriptional regulator ChiR, which is co-localized with chiA in the chitinase operon. Moreover, we established that after chiA is induced, a major portion of the bacterial population expresses chiA, analyzed by flow cytometry. Once expressed, we found ChiA in the bacterial supernatants using Western blot analyses. ChiA secretion was completely abolished when accessory genes within the chitinase operon encoding for a holin and a peptidoglycan hydrolase were deleted. Holins, peptidoglycan hydrolases, and large extracellular enzymes in close proximity have been described as components of the bacterial holin/peptidoglycan hydrolase-dependent protein secretion system or Type 10 Secretion System. Overall, our results confirm that chitinase A is an important virulence factor, tightly regulated by ChiR, that promotes adhesion and invasion upon contact with polarized IEC and is likely secreted by a Type 10 Secretion System (T10SS).


Asunto(s)
Quitinasas , Factores de Virulencia , Humanos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Salmonella typhimurium , Quitinasas/genética , Quitinasas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Serogrupo , Mucosa Intestinal/microbiología , Sistemas de Secreción Bacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Front Immunol ; 11: 731, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411142

RESUMEN

Proteoglycans (PGs) are glycoconjugates which are predominately expressed on cell surfaces and consist of glycosaminoglycans (GAGs) linked to a core protein. An initial step of GAGs assembly is governed by the ß-D-xylosyltransferase enzymes encoded in mammals by the XylT1/XylT2 genes. PGs are essential for the interaction of a cell with other cells as well as with the extracellular matrix. A number of studies highlighted a role of PGs in bacterial adhesion, invasion, and immune response. In this work, we investigated a role of PGs in Salmonella enterica serovar Typhimurium (S. Typhimurium) infection of epithelial cells. Gentamicin protection and chloroquine resistance assays were applied to assess invasion and replication of S. Typhimurium in wild-type and xylosyltransferase-deficient (ΔXylT2) Chinese hamster ovary (CHO) cells lacking PGs. We found that S. Typhimurium adheres to and invades CHO WT and CHO ΔXylT2 cells at comparable levels. However, 24 h after infection, proteoglycan-deficient CHO ΔXylT2 cells are significantly less colonized by S. Typhimurium compared to CHO WT cells. This proteoglycan-dependent phenotype could be rescued by addition of PGs to the cell culture medium, as well as by complementation of the XylT2 gene. Chloroquine resistance assay and immunostaining revealed that in the absence of PGs, significantly less bacteria are associated with Salmonella-containing vacuoles (SCVs) due to a re-distribution of endocytosed gentamicin. Inhibition of endo-lysosomal fusion by a specific inhibitor of phosphatidylinositol phosphate kinase PIKfyve significantly increased S. Typhimurium burden in CHO ΔXylT2 cells demonstrating an important role of PGs for PIKfyve dependent vesicle fusion which is modulated by Salmonella to establish infection. Overall, our results demonstrate that PGs influence survival of intracellular Salmonella in epithelial cells via modulation of PIKfyve-dependent endo-lysosomal fusion.


Asunto(s)
Lisosomas/fisiología , Proteoglicanos/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/patogenicidad , Animales , Células CHO , Membrana Celular , Cloroquina/farmacología , Cricetulus , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Células Epiteliales , Gentamicinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteoglicanos/deficiencia , Salmonella typhimurium/crecimiento & desarrollo , Sobrevida
3.
Front Microbiol ; 10: 762, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105651

RESUMEN

Salmonella enterica serovar Typhimurium (STM) is exposed to reactive oxygen species (ROS) originating from aerobic respiration, antibiotic treatment, and the oxidative burst occurring inside the Salmonella-containing vacuole (SCV) within host cells. ROS damage cellular compounds, thereby impairing bacterial viability and inducing cell death. Proteins containing iron-sulfur (Fe-S) clusters are particularly sensitive and become non-functional upon oxidation. Comprising five enzymes with Fe-S clusters, the TCA cycle is a pathway most sensitive toward ROS. To test the impact of ROS-mediated metabolic perturbations on bacterial physiology, we analyzed the proteomic and metabolic profile of STM deficient in both cytosolic superoxide dismutases (ΔsodAB). Incapable of detoxifying superoxide anions (SOA), endogenously generated SOA accumulate during growth. ΔsodAB showed reduced abundance of aconitases, leading to a metabolic profile similar to that of an aconitase-deficient strain (ΔacnAB). Furthermore, we determined a decreased expression of acnA in STM ΔsodAB. While intracellular proliferation in RAW264.7 macrophages and survival of methyl viologen treatment were not reduced for STM ΔacnAB, proteomic profiling revealed enhanced stress response. We conclude that ROS-mediated reduced expression and damage of aconitase does not impair bacterial viability or virulence, but might increase ROS amounts in STM, which reinforces the bactericidal effects of antibiotic treatment and immune responses of the host.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA