Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 305: 135497, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35764110

RESUMEN

Boron-doped diamond (BDD) electrodes are regarded as the most promising catalytic materials that are highly efficient and suitable for application in advanced electrochemical oxidation processes targeted at the removal of recalcitrant contaminants in different water matrices. Improving the synthesis of these electrodes through the enhancement of their morphology, structure and stability has become the goal of the material scientists. The present work reports the use of an ultranano-diamond electrode with a highly porous structure (B-UNCDWS/TDNT/Ti) for the treatment of water containing carbaryl. The application of the proposed electrode at current density of 75 mA cm-2 led to the complete removal of the pollutant (carbaryl) from the synthetic medium in 30 min of electrolysis with an electric energy per order of 4.01 kWh m-3 order-1. The results obtained from the time-course analysis of the carboxylic acids and nitrogen-based ions present in the solution showed that the concentrations of nitrogen-based ions were within the established maximum levels for human consumption. Under optimal operating conditions, the proposed electrode was successfully employed for the complete removal of carbaryl in real water. Thus, the findings of this study show that the unique, easy-to-prepare BDD-based electrode proposed in this study is a highly efficient tool which has excellent application potential for the removal of recalcitrant pollutants in water.


Asunto(s)
Boro , Contaminantes Químicos del Agua , Boro/química , Carbaril/análisis , Electrodos , Humanos , Nitrógeno/análisis , Oxidación-Reducción , Porosidad , Agua , Contaminantes Químicos del Agua/análisis
2.
ACS Appl Mater Interfaces ; 14(5): 6777-6793, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080174

RESUMEN

Electrocatalytic production of H2O2 via a two-electron oxygen reduction reaction (ORR-2e-) is regarded as a highly promising decentralized and environmentally friendly mechanism for the production of this important chemical commodity. However, the underlying challenges related to the development of catalytic materials that contain zero or low content of noble metals and that are relatively more active, selective, and resistant for long-term use have become a huge obstacle for the electroproduction of H2O2 on commercial and industrial scales. The present study reports the synthesis and characterization of low metal-loaded (≤6.4 wt %) catalysts and their efficiency in H2O2 electroproduction. The catalysts were constructed using gold palladium molybdenum oxide (AuPdMoOx) and palladium molybdenum oxide (PdMoOx) nanoparticles supported on graphene nanoribbons. Based on the application of a rotating ring-disk electrode, we conducted a thorough comparative analysis of the electrocatalytic performance of the catalysts in the ORR under acidic and alkaline media. The proposed catalysts exhibited high catalytic activity (ca. 0.08 mA gnoble metal-1 in an acidic medium and ca. 6.6 mA gnoble metal-1 in an alkaline medium), good selectivity (over 80%), and improved long-term stability toward ORR-2e-. The results obtained showed that the enhanced ORR activity presented by the catalysts, which occurred preferentially via the two-electron pathway, was promoted by a combination of factors including geometry, Pd content, interparticle distance, and site-blocking effects, while the electrochemical stability of the catalysts may have been enhanced by the presence of MoOx.

3.
Environ Res ; 204(Pt A): 112027, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34508772

RESUMEN

The present work investigates the electrocatalytic performance of two different morphologies of boron doped-diamond film electrode (microcrystalline diamond - MCD, and nanocrystalline diamond - NCD) used in electrochemical oxidation for the removal of the antibiotic ciprofloxacin (CIP). A thorough study was conducted regarding the formation of the MCD and NCD films through the adjustment of methane in CH4/H2 gas mixture, and the two films were compared in terms of crystalline structure, apparent doping level, and electrochemical properties. The physicochemical results showed that the NCD film had higher sp2 carbon content and greater doping level; this contributed to improvements in its surface roughness, as well as its specific capacitance and charge transfer, which consequently enhanced its electrocatalytic activity in comparison with the MCD. The results obtained from CIP removal and mineralization assays performed in sulfate medium also showed that the NCD was more efficient than the MCD under all the current densities investigated. The effects of CIP concentration and the evolution of the final by-products, including short-chain carboxylic acids and inorganic ions, were also investigated. The electrochemical performance of the NCD was evaluated in different aqueous matrices, including chloride medium, real wastewater and simulated urine. The application of the NCD led to complete or almost complete CIP degradation, regardless of the medium employed. The kinetic constant rates obtained under the different media investigated were as follows: synthetic urine (0.0416 min-1 - R2 = 0.991) < real wastewater (0.0923 min-1 R2 = 0.997) < synthetic matrix containing chloride (0.1992 min-1 - R2 = 0.995); this shows that the pollutant degradation was affected by the type of aqueous matrix and the oxidants that were electrogenerated in situ. The results obtained from the analysis of electrical energy per order (EE/O) showed that the treatment of simulated urine spkiked with required the highest energy consumption, followed by the real effluent and synthetic matrix containing chloride. The present study proves the viability of electrocatalytic nanostructured materials to the treatment of antibiotics in complex matrices.


Asunto(s)
Diamante , Contaminantes Químicos del Agua , Boro , Ciprofloxacina , Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA