Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687487

RESUMEN

The condition-based maintenance of vibrating screens requires new methods of their elements' diagnostics due to severe disturbances in measured signals from vibrators and falling pieces of material. The bolted joints of the sieving deck, when failed, require a lot of time and workforce for repair. In this research, the authors proposed the model-based diagnostic method based on modal analysis of the 2-DOF system, which accounts for the interaction of the screen body and the upper deck under conditions of bolted joint degradation. It is shown that the second natural mode with an out-of-phase motion of the upper deck against the main screen housing may coincide with the excitation frequency or its higher harmonics, which appear when vibrators' bearings are in bad condition. This interaction speeds up bolt loosening and joint opening by the dynamical loading of higher amplitude. The proposed approach can be used to detune the system from resonance and anti-resonance to reduce maintenance costs and energy consumption. To prevent abrupt failures, such parameters as second natural mode frequency, damping factor, and phase space plot (PSP) distortion measures are proposed as bolt health indicators, and these are verified on the laboratory vibrating screen. Also, the robustness is tested by the impulsive non-Gaussian noise addition to the measurement data. A special diagram was proposed for the bolted joints' strength capacity assessment and maintenance actions planning (tightening, replacement), depending on clearance in the joints.

2.
Materials (Basel) ; 16(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36837164

RESUMEN

Predictive maintenance is increasingly popular in many branches, as well as in the mining industry; however, there is a lack of spectacular examples of its practice efficiency. Close collaboration between Omya Group and Wroclaw University of Science and Technology allowed investigation of the failure of the inertial vibrator's bearing. The signals of vibration are captured from the sieving screen just before bearing failure and right after repair, when it was visually inspected after replacement. The additional complication was introduced by the loss of stable attachment of the vibrator's shield, which produced great periodical excitation in each place of measurement on the machine. Such anomalies in the signals, in addition to falling pieces of material, made impossible the diagnostics by standard methods. However, the implementation of advanced signal processing techniques such as time-frequency diagrams, envelope spectrum, cyclic spectral coherence, orbits analysis, and phase space plots allowed to undermine defects (pitting on the inner ring). After repair, the amplitudes of vibration from the damaged bearing side were reduced by five times, while sound pressure was only two times lower. The quantitative parameters of vibrations showed significant changes: time series RMS (-68%) median energy of spectrograms (89%), frequencies ratio of cyclic spectral coherence (-85%), and average amplitude of harmonics in envelope spectrum (-80%). The orbits demonstrated changes in inclination angle (16%) and sizes (-48, … -96%), as well as phase space plots sizes (-28, … -67%). Directions of further research are considered.

3.
Materials (Basel) ; 14(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34772222

RESUMEN

Comparative strength analysis of two popular options of the radial centrifugal fan impeller design used in horizontal conveyor dryer for fine-grained raw materials is presented. Three types of materials for impeller manufacturing-ASTM A36 steel, Hardox 450 steel and aluminium alloy 6061-T6 are considered. The finite element method (FEM) has been used to investigate stresses and deformations of the impeller within the operational speed range. Analysis shows that the better design is the impeller made of Hardox 450 steel with a central disk. Although the maximum stress is slightly higher in the blades slot for central disk fitting for this design option, it has greatly reduced stresses in contact edges with two other disks (by 22-38%) and blades bending deformation (by 51%). For this design, the maximum operational rotation speed is 1135 min-1 according to the yield strength with a 15% safety factor, while for basic design, it is 1225 min-1. The rational choice of material depends on maximum value of the yield stress to density ratio as well as taking into account the operating conditions and required fan performance. Recommendations for manufacturing the centrifugal fan impeller related to chosen material are given.

4.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353160

RESUMEN

The problem solved in this research is the diagnosis of the radial clearances in bearing supports and the loosening of fastening bolts due to their plastic elongation (creep) or weak tightening using vibration signals. This is an important issue for the maintenance of the heavy-duty gearboxes of powerful mining machines and rolling mills working in non-stationary regimes. Based on a comprehensive overview of bolted joint diagnostic methods, a solution to this problem based on a developed nonlinear dynamical model of bearing supports is proposed. Diagnostic rules are developed by comparing the changes of natural frequency and its harmonics, the amplitudes and phases of shaft transient oscillations. Then, the vibration signals are measured on real gearboxes while the torque is increasing in the transmission during several series of industrial trials under changing bearings and bolts conditions. In parallel, dynamical torque is measured and its interrelation with vibration is determined. It is concluded that the radial clearances are the most influencing factors among the failure parameters in heavy-duty gearboxes of industrial machines working under impulsive and step-like loading. The developed diagnostics algorithm allows condition monitoring of bearings and fastening bolts, allowing one to undertake timely maintenance actions to prevent failures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA