Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
BMC Cancer ; 23(1): 775, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37596538

BACKGROUND: Inhibitors of Poly (ADP-Ribose) Polymerases (PARP) provide clinical benefit to patients with breast and ovarian cancers, by compromising the DNA repair activity of cancer cells. Although these agents extend progression-free survival in many patients, responses can be short lived with many patients ultimately progressing. Identification of combination partners that increase dependence of cancer cells to the DNA repair activity of PARPs may represent a strategy to increase the utility of PARP inhibitors. Protein arginine methyltransferase 5 (PRMT5) regulates DNA damage response pathways through splicing and protein modification, and inhibitors of PRMT5 have recently entered clinical trials. METHODS: The effect of PRMT5 inhibition on the levels of DNA damage and repair markers including γH2AX, RAD51, and 53BP1 was determined using high content immunofluorescent imaging. The anti-proliferative activity of the combination of PRMT5 and PARP inhibitors was evaluated using in vitro models of breast and ovarian cancers using both cell lines and ex vivo patient derived xenografts. Finally, the combinations of PRMT5 and PARP inhibitors were evaluated in cell line xenograft models in vivo. RESULTS: Inhibition of PRMT5 by GSK3326595 led to increased levels of markers of DNA damage. The addition of GSK3326595 to the PARP inhibitor, niraparib, resulted in increased growth inhibition of breast and ovarian cancer cell lines and patient derived spheroids. In vivo, the combination improved the partial effects on tumor growth inhibition achieved by either single agent, producing complete tumor stasis and regression. CONCLUSION: These data demonstrate that inhibition of PRMT5 induced signatures of DNA damage in models of breast and ovarian cancer. Furthermore, combination with the PARP inhibitor, Niraparib, resulted in increased anti-tumor activity in vitro and in vivo. Overall, these data suggest inhibition of PRMT5 as a mechanism to broaden and enhance the clinical application of PARP inhibitors.


Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Animals , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Ovarian Neoplasms/drug therapy , DNA Damage , Disease Models, Animal , Protein-Arginine N-Methyltransferases
2.
Cancer Immunol Res ; 10(4): 420-436, 2022 04 01.
Article En | MEDLINE | ID: mdl-35181787

Protein arginine methyltransferases (PRMT) are a widely expressed class of enzymes responsible for catalyzing arginine methylation on numerous protein substrates. Among them, type I PRMTs are responsible for generating asymmetric dimethylarginine. By controlling multiple basic cellular processes, such as DNA damage responses, transcriptional regulation, and mRNA splicing, type I PRMTs contribute to cancer initiation and progression. A type I PRMT inhibitor, GSK3368715, has been developed and has entered clinical trials for solid and hematologic malignancies. Although type I PRMTs have been reported to play roles in modulating immune cell function, the immunologic role of tumor-intrinsic pathways controlled by type I PRMTs remains uncharacterized. Here, our The Cancer Genome Atlas dataset analysis revealed that expression of type I PRMTs associated with poor clinical response and decreased immune infiltration in patients with melanoma. In cancer cell lines, inhibition of type I PRMTs induced an IFN gene signature, amplified responses to IFN and innate immune signaling, and decreased expression of the immunosuppressive cytokine VEGF. In immunocompetent mouse tumor models, including a model of T-cell exclusion that represents a common mechanism of anti-programmed cell death protein 1 (PD-1) resistance in humans, type I PRMT inhibition increased T-cell infiltration, produced durable responses dependent on CD8+ T cells, and enhanced efficacy of anti-PD-1 therapy. These data indicate that type I PRMT inhibition exhibits immunomodulatory properties and synergizes with immune checkpoint blockade (ICB) to induce durable antitumor responses in a T cell-dependent manner, suggesting that type I PRMT inhibition can potentiate an antitumor immunity in refractory settings.


Intracellular Signaling Peptides and Proteins , Protein-Arginine N-Methyltransferases , Animals , Arginine , Humans , Immunity , Mice , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
4.
J Med Chem ; 64(15): 10772-10805, 2021 08 12.
Article En | MEDLINE | ID: mdl-34255512

The profound efficacy of pan-BET inhibitors is well documented, but these epigenetic agents have shown pharmacology-driven toxicity in oncology clinical trials. The opportunity to identify inhibitors with an improved safety profile by selective targeting of a subset of the eight bromodomains of the BET family has triggered extensive medicinal chemistry efforts. In this article, we disclose the identification of potent and selective drug-like pan-BD2 inhibitors such as pyrazole 23 (GSK809) and furan 24 (GSK743) that were derived from the pyrrole fragment 6. We transpose the key learnings from a previous pyridone series (GSK620 2 as a representative example) to this novel class of inhibitors, which are characterized by significantly improved solubility relative to our previous research.


Furans/pharmacology , Proteins/antagonists & inhibitors , Pyrazoles/pharmacology , Dose-Response Relationship, Drug , Furans/chemistry , Humans , Molecular Structure , Proteins/metabolism , Pyrazoles/chemistry , Structure-Activity Relationship
5.
Haematologica ; 106(7): 1979-1987, 2021 07 01.
Article En | MEDLINE | ID: mdl-32586904

Pharmacological induction of fetal hemoglobin (HbF) expression is an effective therapeutic strategy for the management of beta-hemoglobinopathies such as sickle cell disease. DNA methyltransferase (DNMT) inhibitors 5-azacytidine (5-aza) and 5-aza-2'-deoxycytidine (decitabine) have been shown to induce fetal hemoglobin expression in both preclinical models and clinical studies, but are not currently approved for the management of hemoglobinopathies. We report here the discovery of a novel class of orally bioavailable DNMT1-selective inhibitors as exemplified by GSK3482364. This molecule potently inhibits the methyltransferase activity of DNMT1, but not DNMT family members DNMT3A or DNMT3B. In contrast with cytidine analog DNMT inhibitors, the DNMT1 inhibitory mechanism of GSK3482364 does not require DNA incorporation and is reversible. In cultured human erythroid progenitor cells (EPCs), GSK3482364 decreased overall DNA methylation resulting in de-repression of the gamma globin genes HBG1 and HBG2 and increased HbF expression. In a transgenic mouse model of sickle cell disease, orally administered GSK3482364 caused significant increases in both HbF levels and in the percentage HbF-expressing erythrocytes, with good overall tolerability. We conclude that in these preclinical models, selective, reversible inhibition of DNMT1 is sufficient for the induction of HbF, and is well-tolerated. We anticipate that GSK3482364 will be a useful tool molecule for the further study of selective DNMT1 inhibition both in vitro and in vivo.


Anemia, Sickle Cell , Fetal Hemoglobin , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Animals , Azacitidine/pharmacology , DNA Methylation , Fetal Hemoglobin/genetics , Mice , gamma-Globins/genetics
6.
ACS Med Chem Lett ; 11(2): 133-140, 2020 Feb 13.
Article En | MEDLINE | ID: mdl-32071679

We report herein the discovery of isoxazole amides as potent and selective SET and MYND Domain-Containing Protein 3 (SMYD3) inhibitors. Elucidation of the structure-activity relationship of the high-throughput screening (HTS) lead compound 1 provided potent and selective SMYD3 inhibitors. The SAR optimization, cocrystal structures of small molecules with SMYD3, and mode of inhibition (MOI) characterization of compounds are described. The synthesis and biological and pharmacokinetic profiles of compounds are also presented.

7.
J Thorac Oncol ; 14(10): 1828-1838, 2019 10.
Article En | MEDLINE | ID: mdl-31260835

INTRODUCTION: This first-time-in-humans study assessed the safety, pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of GSK2879552 in patients with relapsed or refractory SCLC. METHODS: This phase I, multicenter, open-label study (NCT02034123) enrolled patients (≥18 years old) with relapsed or refractory SCLC (after ≥1 platinum-containing chemotherapy or refusal of standard therapy). Part 1 was a dose-escalation study; Part 2 was a dose-expansion study. Dose escalations were based on safety, PK, and PD. The primary end point (Part 1) was to determine the safety, tolerability, and recommended dose and regimen of GSK2879552. Secondary end points were to characterize PK and PD parameters and measure disease control rate at week 16. Part 2 was not conducted. RESULTS: Between February 4, 2014, and April 18, 2017, a total of 29 patients were allocated to one of nine dose cohorts (0.25 mg-3 mg once daily and 3-mg or 4-mg intermittent dosing). In all, 22 patients completed the study; 7 withdrew, primarily owing to adverse events (AEs). Most patients (24 of 29 [83%]) had at least one treatment-related AE, most commonly thrombocytopenia (12 of 29 [41%]). Twelve serious AEs (SAEs) were reported by nine patients; six were considered treatment related, the most common of which was encephalopathy (four SAEs). Three patients died; one death was related to SAEs. PK was characterized by rapid absorption, slow elimination, and a dose-proportional increase in exposure. CONCLUSIONS: GSK2879552 is a potent, selective inhibitor of lysine demethylase 1A and has demonstrated favorable PK properties but provided poor disease control and a high AE rate in patients with SCLC. The study was terminated, as the risk-benefit profile did not favor continuation.


Benzoates/therapeutic use , Cyclopropanes/therapeutic use , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Salvage Therapy , Small Cell Lung Carcinoma/drug therapy , Adolescent , Adult , Aged , Benzoates/pharmacokinetics , Cyclopropanes/pharmacokinetics , Dose-Response Relationship, Drug , Female , Follow-Up Studies , Humans , Lung Neoplasms/pathology , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Recurrence, Local/pathology , Prognosis , Small Cell Lung Carcinoma/pathology , Survival Rate , Tissue Distribution , Young Adult
8.
Cancer Cell ; 36(1): 100-114.e25, 2019 07 08.
Article En | MEDLINE | ID: mdl-31257072

Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of arginines on proteins. Type I PRMTs and their substrates have been implicated in human cancers, suggesting inhibition of type I PRMTs may offer a therapeutic approach for oncology. The current report describes GSK3368715 (EPZ019997), a potent, reversible type I PRMT inhibitor with anti-tumor effects in human cancer models. Inhibition of PRMT5, the predominant type II PRMT, produces synergistic cancer cell growth inhibition when combined with GSK3368715. Interestingly, deletion of the methylthioadenosine phosphorylase gene (MTAP) results in accumulation of the metabolite 2-methylthioadenosine, an endogenous inhibitor of PRMT5, and correlates with sensitivity to GSK3368715 in cell lines. These data provide rationale to explore MTAP status as a biomarker strategy for patient selection.


Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/deficiency , Alternative Splicing , Antineoplastic Agents/chemistry , Biomarkers , Cell Line, Tumor , Drug Synergism , Enzyme Inhibitors/chemistry , Humans , Methylation , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Protein-Arginine N-Methyltransferases/chemistry , Substrate Specificity
9.
Nat Commun ; 10(1): 2723, 2019 06 20.
Article En | MEDLINE | ID: mdl-31222014

Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.


Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Leukemic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Trans-Activators/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Bone Marrow/pathology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Epigenesis, Genetic/drug effects , Female , HEK293 Cells , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription, Genetic/drug effects , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Cancer Discov ; 9(7): 872-889, 2019 07.
Article En | MEDLINE | ID: mdl-31076479

Disruption of epigenetic regulation is a hallmark of acute myeloid leukemia (AML), but epigenetic therapy is complicated by the complexity of the epigenome. Herein, we developed a long-term primary AML ex vivo platform to determine whether targeting different epigenetic layers with 5-azacytidine and LSD1 inhibitors would yield improved efficacy. This combination was most effective in TET2 mut AML, where it extinguished leukemia stem cells and particularly induced genes with both LSD1-bound enhancers and cytosine-methylated promoters. Functional studies indicated that derepression of genes such as GATA2 contributes to drug efficacy. Mechanistically, combination therapy increased enhancer-promoter looping and chromatin-activating marks at the GATA2 locus. CRISPRi of the LSD1-bound enhancer in patient-derived TET2 mut AML was associated with dampening of therapeutic GATA2 induction. TET2 knockdown in human hematopoietic stem/progenitor cells induced loss of enhancer 5-hydroxymethylation and facilitated LSD1-mediated enhancer inactivation. Our data provide a basis for rational targeting of cooperating aberrant promoter and enhancer epigenetic marks driven by mutant epigenetic modifiers. SIGNIFICANCE: Somatic mutations of genes encoding epigenetic modifiers are a hallmark of AML and potentially disrupt many components of the epigenome. Our study targets two different epigenetic layers at promoters and enhancers that cooperate to aberrant gene silencing, downstream of the actions of a mutant epigenetic regulator.This article is highlighted in the In This Issue feature, p. 813.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Animals , Azacitidine/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , DNA Methylation/drug effects , DNA-Binding Proteins/genetics , Dioxygenases , Enhancer Elements, Genetic , Epigenome , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Genes, Tumor Suppressor , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Promoter Regions, Genetic/drug effects , Proto-Oncogene Proteins/genetics , Random Allocation , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Nat Immunol ; 20(1): 86-96, 2019 01.
Article En | MEDLINE | ID: mdl-30538335

Germinal center (GC) B cells feature repression of many gene enhancers to establish their characteristic transcriptome. Here we show that conditional deletion of Lsd1 in GCs significantly impaired GC formation, associated with failure to repress immune synapse genes linked to GC exit, which are also direct targets of the transcriptional repressor BCL6. We found that BCL6 directly binds LSD1 and recruits it primarily to intergenic and intronic enhancers. Conditional deletion of Lsd1 suppressed GC hyperplasia caused by constitutive expression of BCL6 and significantly delayed BCL6-driven lymphomagenesis. Administration of catalytic inhibitors of LSD1 had little effect on GC formation or GC-derived lymphoma cells. Using a CRISPR-Cas9 domain screen, we found instead that the LSD1 Tower domain was critical for dependence on LSD1 in GC-derived B cells. These results indicate an essential role for LSD1 in the humoral immune response, where it modulates enhancer function by forming repression complexes with BCL6.


B-Lymphocytes/physiology , Germinal Center/pathology , Histone Demethylases/metabolism , Lymphoma/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , Animals , CRISPR-Cas Systems , Carcinogenesis , DNA, Intergenic/genetics , Germinal Center/immunology , Histone Demethylases/genetics , Hyperplasia , Immunological Synapses/genetics , Introns/genetics , Lymphoma/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-bcl-6/genetics
13.
Haematologica ; 104(6): 1156-1167, 2019 06.
Article En | MEDLINE | ID: mdl-30514804

Lysine specific demethylase 1 (LSD1) is a histone modifying enzyme that suppresses gene expression through demethylation of lysine 4 on histone H3. The anti-tumor activity of GSK2879552 and GSK-LSD1, potent, selective irreversible inactivators of LSD1, has previously been described. Inhibition of LSD1 results in a cytostatic growth inhibitory effect in a range of acute myeloid leukemia cell lines. To enhance the therapeutic potential of LSD1 inhibition in this disease setting, a combination of LSD1 inhibition and all-trans retinoic acid was explored. All-trans retinoic acid is currently approved for use in acute promyelocytic leukemia in which it promotes differentiation of abnormal blast cells into normal white blood cells. Combined treatment with all-trans retinoic acid and GSK2879552 results in synergistic effects on cell proliferation, markers of differentiation, and, most importantly, cytotoxicity. Ultimately the combination potential for LSD1 inhibition and ATRA will require validation in acute myeloid leukemia patients, and clinical studies to assess this are currently underway.


Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Tretinoin/pharmacology , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Benzoates/pharmacology , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclopropanes/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Treatment Outcome , Tretinoin/administration & dosage
15.
Cancer Cell ; 33(6): 1111-1127.e5, 2018 06 11.
Article En | MEDLINE | ID: mdl-29894694

Chromatin-modifying enzymes, and specifically the protein arginine methyltransferases (PRMTs), have emerged as important targets in cancer. Here, we investigated the role of CARM1 in normal and malignant hematopoiesis. Using conditional knockout mice, we show that loss of CARM1 has little effect on normal hematopoiesis. Strikingly, knockout of Carm1 abrogates both the initiation and maintenance of acute myeloid leukemia (AML) driven by oncogenic transcription factors. We show that CARM1 knockdown impairs cell-cycle progression, promotes myeloid differentiation, and ultimately induces apoptosis. Finally, we utilize a selective, small-molecule inhibitor of CARM1 to validate the efficacy of CARM1 inhibition in leukemia cells in vitro and in vivo. Collectively, this work suggests that targeting CARM1 may be an effective therapeutic strategy for AML.


Gene Expression Regulation, Leukemic , Hematopoiesis/genetics , Leukemia, Myeloid/genetics , Protein-Arginine N-Methyltransferases/genetics , Acute Disease , Animals , Apoptosis/genetics , Cell Cycle/genetics , Cell Line, Tumor , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Protein-Arginine N-Methyltransferases/metabolism
16.
Sci Rep ; 8(1): 9711, 2018 06 26.
Article En | MEDLINE | ID: mdl-29946150

Evasion of the potent tumour suppressor activity of p53 is one of the hurdles that must be overcome for cancer cells to escape normal regulation of cellular proliferation and survival. In addition to frequent loss of function mutations, p53 wild-type activity can also be suppressed post-translationally through several mechanisms, including the activity of PRMT5. Here we describe broad anti-proliferative activity of potent, selective, reversible inhibitors of protein arginine methyltransferase 5 (PRMT5) including GSK3326595 in human cancer cell lines representing both hematologic and solid malignancies. Interestingly, PRMT5 inhibition activates the p53 pathway via the induction of alternative splicing of MDM4. The MDM4 isoform switch and subsequent p53 activation are critical determinants of the response to PRMT5 inhibition suggesting that the integrity of the p53-MDM4 regulatory axis defines a subset of patients that could benefit from treatment with GSK3326595.


Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins/metabolism , RNA Splicing/genetics , Tumor Suppressor Protein p53/metabolism , Alternative Splicing/genetics , Antineoplastic Agents , Arginine/analogs & derivatives , Arginine/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Cycle Proteins , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Enzyme Inhibitors/pharmacology , Humans , Nuclear Proteins/genetics , Protein Isoforms/genetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Tumor Suppressor Protein p53/genetics , snRNP Core Proteins/metabolism
17.
Oncogenesis ; 7(4): 35, 2018 Apr 20.
Article En | MEDLINE | ID: mdl-29674704

BET inhibitors exhibit broad activity in cancer models, making predictive biomarkers challenging to define. Here we investigate the biomarkers of activity of the clinical BET inhibitor GSK525762 (I-BET; I-BET762) across cancer cell lines and demonstrate that KRAS mutations are novel resistance biomarkers. This finding led us to combine BET with RAS pathway inhibition using MEK inhibitors to overcome resistance, which resulted in synergistic effects on growth and survival in RAS pathway mutant models as well as a subset of cell lines lacking RAS pathway mutations. GSK525762 treatment up-regulated p-ERK1/2 levels in both RAS pathway wild-type and mutant cell lines, suggesting that MEK/ERK pathway activation may also be a mechanism of adaptive BET inhibitor resistance. Importantly, gene expression studies demonstrated that the BET/MEK combination uniquely sustains down-regulation of genes associated with mitosis, leading to prolonged growth arrest that is not observed with either single agent therapy. These studies highlight a potential to enhance the clinical benefit of BET and MEK inhibitors and provide a strong rationale for clinical evaluation of BET/MEK combination therapies in cancer.

18.
Blood ; 131(15): 1730-1742, 2018 04 12.
Article En | MEDLINE | ID: mdl-29453291

Epigenetic regulators are recurrently mutated and aberrantly expressed in acute myeloid leukemia (AML). Targeted therapies designed to inhibit these chromatin-modifying enzymes, such as the histone demethylase lysine-specific demethylase 1 (LSD1) and the histone methyltransferase DOT1L, have been developed as novel treatment modalities for these often refractory diseases. A common feature of many of these targeted agents is their ability to induce myeloid differentiation, suggesting that multiple paths toward a myeloid gene expression program can be engaged to relieve the differentiation blockade that is uniformly seen in AML. We performed a comparative assessment of chromatin dynamics during the treatment of mixed lineage leukemia (MLL)-AF9-driven murine leukemias and MLL-rearranged patient-derived xenografts using 2 distinct but effective differentiation-inducing targeted epigenetic therapies, the LSD1 inhibitor GSK-LSD1 and the DOT1L inhibitor EPZ4777. Intriguingly, GSK-LSD1 treatment caused global gains in chromatin accessibility, whereas treatment with EPZ4777 caused global losses in accessibility. We captured PU.1 and C/EBPα motif signatures at LSD1 inhibitor-induced dynamic sites and chromatin immunoprecipitation coupled with high-throughput sequencing revealed co-occupancy of these myeloid transcription factors at these sites. Functionally, we confirmed that diminished expression of PU.1 or genetic deletion of C/EBPα in MLL-AF9 cells generates resistance of these leukemias to LSD1 inhibition. These findings reveal that pharmacologic inhibition of LSD1 represents a unique path to overcome the differentiation block in AML for therapeutic benefit.


CCAAT-Enhancer-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Leukemia, Biphenotypic, Acute/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/metabolism , Leukemia, Biphenotypic, Acute/pathology , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins/genetics , Response Elements , Trans-Activators/genetics
19.
Sci Rep ; 7(1): 17993, 2017 12 21.
Article En | MEDLINE | ID: mdl-29269946

CARM1 is an arginine methyltransferase with diverse histone and non-histone substrates implicated in the regulation of cellular processes including transcriptional co-activation and RNA processing. CARM1 overexpression has been reported in multiple cancer types and has been shown to modulate oncogenic pathways in in vitro studies. Detailed understanding of the mechanism of action of CARM1 in oncogenesis has been limited by a lack of selective tool compounds, particularly for in vivo studies. We describe the identification and characterization of, to our knowledge, the first potent and selective inhibitor of CARM1 that exhibits anti-proliferative effects both in vitro and in vivo and, to our knowledge, the first demonstration of a role for CARM1 in multiple myeloma (MM). EZM2302 (GSK3359088) is an inhibitor of CARM1 enzymatic activity in biochemical assays (IC50 = 6 nM) with broad selectivity against other histone methyltransferases. Treatment of MM cell lines with EZM2302 leads to inhibition of PABP1 and SMB methylation and cell stasis with IC50 values in the nanomolar range. Oral dosing of EZM2302 demonstrates dose-dependent in vivo CARM1 inhibition and anti-tumor activity in an MM xenograft model. EZM2302 is a validated chemical probe suitable for further understanding the biological role CARM1 plays in cancer and other diseases.


Antineoplastic Agents/therapeutic use , CARD Signaling Adaptor Proteins/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Guanylate Cyclase/antagonists & inhibitors , Isoxazoles/therapeutic use , Multiple Myeloma/drug therapy , Pyrimidines/therapeutic use , Spiro Compounds/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Humans , In Vitro Techniques , Isoxazoles/pharmacokinetics , Male , Mice , Neoplasm Transplantation , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Spiro Compounds/pharmacokinetics
20.
Cancer J ; 23(5): 292-301, 2017.
Article En | MEDLINE | ID: mdl-28926430

Most, if not all, human cancers exhibit altered epigenetic signatures that promote aberrant gene expression that contributes to cellular transformation. Historically, attempts to pharmacologically intervene in this process have focused on DNA methylation and histone acetylation. More recently, genome-wide studies have identified histone and chromatin regulators as one of the most frequently dysregulated functional classes in a wide range of cancer types. These findings have provided numerous potential therapeutic targets including many that affect histone methylation. These include histone lysine methyltransferases such as enhancer of zeste homolog 2 and DOT1L, protein arginine methyltransferases such as protein arginine methyltransferase 5, and histone lysine demethylases such as lysine-specific demethylase 1. This review presents the rationale for targeting histone methylation in oncology and provides an update on a few key targets that are being investigated in the clinic.


Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histones/genetics , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Humans , Methylation/drug effects , Neoplasms/genetics , Protein Processing, Post-Translational/drug effects
...