Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 11959, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686730

RESUMEN

The role of non-bilayer lipids and non-lamellar lipid phases in biological membranes is an enigmatic problem of membrane biology. Non-bilayer lipids are present in large amounts in all membranes; in energy-converting membranes they constitute about half of their total lipid content-yet their functional state is a bilayer. In vitro experiments revealed that the functioning of the water-soluble violaxanthin de-epoxidase (VDE) enzyme of plant thylakoids requires the presence of a non-bilayer lipid phase. 31P-NMR spectroscopy has provided evidence on lipid polymorphism in functional thylakoid membranes. Here we reveal reversible pH- and temperature-dependent changes of the lipid-phase behaviour, particularly the flexibility of isotropic non-lamellar phases, of isolated spinach thylakoids. These reorganizations are accompanied by changes in the permeability and thermodynamic parameters of the membranes and appear to control the activity of VDE and the photoprotective mechanism of non-photochemical quenching of chlorophyll-a fluorescence. The data demonstrate, for the first time in native membranes, the modulation of the activity of a water-soluble enzyme by a non-bilayer lipid phase.


Asunto(s)
Membrana Dobles de Lípidos/química , Oxidorreductasas/metabolismo , Tilacoides/química , Agua/química , Rastreo Diferencial de Calorimetría , Compuestos Epoxi/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Luz , Lípidos/química , Espectroscopía de Resonancia Magnética , Solubilidad , Spinacia oleracea/metabolismo , Temperatura , Xantófilas/metabolismo
2.
Biophys J ; 108(4): 844-853, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25692589

RESUMEN

Protonation of the lumen-exposed residues of some photosynthetic complexes in the grana membranes occurs under conditions of high light intensity and triggers a major photoprotection mechanism known as energy dependent nonphotochemical quenching. We have studied the role of protonation in the structural reorganization and thermal stability of isolated grana membranes. The macroorganization of granal membrane fragments in protonated and partly deprotonated state has been mapped by means of atomic force microscopy. The protonation of the photosynthetic complexes has been found to induce large-scale structural remodeling of grana membranes-formation of extensive domains of the major light-harvesting complex of photosystem II and clustering of trimmed photosystem II supercomplexes, thinning of the membrane, and reduction of its size. These events are accompanied by pronounced thermal destabilization of the photosynthetic complexes, as evidenced by circular dichroism spectroscopy and differential scanning calorimetry. Our data reveal a detailed nanoscopic picture of the initial steps of nonphotochemical quenching.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Tilacoides/química , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Pisum sativum/química , Pisum sativum/enzimología , Pisum sativum/ultraestructura , Desnaturalización Proteica , Tilacoides/enzimología
3.
Plant Physiol Biochem ; 80: 75-82, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24727791

RESUMEN

In the present work the effects of exogenous 24-epibrassinolide (EBR) on functional and structural characteristics of the thylakoid membranes under non-stress conditions were evaluated 48 h after spraying of pea plants with different concentrations of EBR (0.01, 0.1 and 1.0 mg.L(-1)). The results show that the application of 0.1 mg.L(-1) EBR has the most pronounced effect on the studied characteristics of the photosynthetic membranes. The observed changes in 540 nm light scattering and in the calorimetric transitions suggest alterations in the structural organization of the thylakoid membranes after EBR treatment, which in turn influence the kinetics of oxygen evolution, accelerate the electron transport rate, increase the effective quantum yield of photosystem II and the photochemical quenching. The EBR-induced changes in the photosynthetic membranes are most probably involved in the stress tolerance of plants.


Asunto(s)
Brasinoesteroides/farmacología , Pisum sativum/metabolismo , Esteroides Heterocíclicos/farmacología , Clorofila/metabolismo , Oxígeno/metabolismo , Pisum sativum/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Tilacoides/efectos de los fármacos , Tilacoides/metabolismo
4.
Photosynth Res ; 111(1-2): 113-24, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22052408

RESUMEN

Elastic incoherent neutron scattering (EINS), a non-invasive technique which is capable of measuring the mean square displacement of atoms in the sample, has been widely used in biology for exploring the dynamics of proteins and lipid membranes but studies on photosynthetic systems are scarce. In this study we investigated the dynamic characteristics of Photosystem II (PSII) membrane fragments between 280 and 340 K, i.e., in the physiological temperature range and in the range of thermal denaturation of some of the protein complexes. The mean square displacement values revealed the presence of a hydration-sensitive transition in the sample between 310 and 320 K, suggesting that the oxygen evolving complex (OEC) plays an important role in the transition. Indeed, in samples in which the OEC had been removed by TRIS- or heat-treatments (323 and 333 K) no such transition was found. Further support on the main role of OEC in these reorganizations is provided by data obtained from differential scanning calorimetry experiments, showing marked differences between the untreated and TRIS-treated samples. In contrast, circular dichroism spectra exhibited only minor changes in the excitonic interactions below 323 K, showing that the molecular organization of the pigment-protein complexes remains essentially unaffected. Our data, along with earlier incoherent neutron scattering data on PSII membranes at cryogenic temperatures (Pieper et al., Biochemistry 46:11398-11409, 2007), demonstrate that this technique can be applied to characterize the dynamic features of PSII membranes, and can be used to investigate photosynthetic membranes under physiologically relevant experimental conditions.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Spinacia oleracea/química , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Difracción de Neutrones , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dispersión de Radiación , Spinacia oleracea/metabolismo , Temperatura , Tilacoides/química , Tilacoides/metabolismo
5.
Biochim Biophys Acta ; 1778(12): 2823-33, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18929531

RESUMEN

The lipid packing of thylakoid membranes is an important factor for photosynthetic performance. However, surprisingly little is known about it and it is generally accepted that the bulk thylakoid lipids adopt the liquid-crystalline phase above -30 degrees C and that a phase transition occurs only above 45 degrees C. In order to obtain information on the nature of the lipid microenvironment and its temperature dependence, steady-state and time-resolved fluorescence measurements were performed on the fluorescence probe Merocyanine 540 (MC540) incorporated in isolated spinach thylakoids and in model lipid systems (dipalmitoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) adopting different phases. It is demonstrated that the degree and way of incorporation differs for most lipid phases--upon selective excitation at 570 nm, the amplitude of the fluorescence component that corresponds to membrane-incorporated MC540 is about 20% in gel-, 60% in rippled gel-, and 90% in liquid-crystalline and inverted hexagonal phase, respectively. For thylakoids, the data reveal hindered incorporation of MC540 (amplitude about 30% at 7 degrees C) and marked spectral heterogeneity at all temperatures. The incorporation of MC540 in thylakoids strongly depends on temperature. Remarkably, above 25 degrees C MC540 becomes almost completely extruded from the lipid environment, indicating major rearrangements in the membrane.


Asunto(s)
Colorantes Fluorescentes/química , Lípidos de la Membrana/química , Pirimidinonas/química , Espectrometría de Fluorescencia , Tilacoides/metabolismo , Estructura Molecular , Temperatura , Factores de Tiempo
6.
Biochim Biophys Acta ; 1778(4): 997-1003, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18230332

RESUMEN

Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing. In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 degrees C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 degrees C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase.


Asunto(s)
Transición de Fase , Fosfatidilgliceroles/metabolismo , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Fosfatos , Solubilidad , Temperatura , Trometamina
7.
J Photochem Photobiol B ; 78(2): 165-70, 2005 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-15664504

RESUMEN

The main light-harvesting chl a/b pigment-protein complex of photosystem II (LHCII) in isolated state forms macroaggregates with different ultrastructure and lipid content [I. Simidjiev, V. Barzda, L. Mustardy, G. Garab, Anal. Biochem. 250 (1997) 169-175]. The thermodynamic stability of highly delipidated tightly bound LHCII macroaggregates is studied by differential scanning calorimetry and fluorescence spectroscopy. The calorimetric profile of LHCII is asymmetric, the denaturation transition is taking place at around 72 degrees C. A shoulder, which overlaps with the main denaturation transition, appears around 58 degrees C. The denaturation temperature strongly depends on the scanning rate indicating the kinetic nature of the thermal destabilization of LHCII macroaggregates. The fluorescence data prove that the thermal denaturation of LHCII is an irreversible and kinetically controlled process.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Rastreo Diferencial de Calorimetría , Estabilidad de Enzimas , Cinética , Pisum sativum/enzimología , Complejo de Proteína del Fotosistema II/aislamiento & purificación , Desnaturalización Proteica , Espectrometría de Fluorescencia , Spinacia oleracea/enzimología , Temperatura
8.
Biochemistry ; 42(38): 11272-80, 2003 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-14503877

RESUMEN

The thermo-optic mechanism in thylakoid membranes was earlier identified by measuring the thermal and light stabilities of pigment arrays with different levels of structural complexity [Cseh, Z., et al. (2000) Biochemistry 39, 15250-15257]. (According to the thermo-optic mechanism, fast local thermal transients, arising from the dissipation of excess, photosynthetically not used, excitation energy, induce elementary structural changes due to the "built-in" thermal instabilities of the given structural units.) The same mechanism was found to be responsible for the light-induced trimer-to-monomer transition in LHCII, the main chlorophyll a/b light-harvesting antenna of photosystem II (PSII) [Garab, G., et al. (2002) Biochemistry 41, 15121-15129]. In this paper, differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy on thylakoid membranes of barley and pea are used to correlate the thermo-optically inducible structural changes with well-discernible calorimetric transitions. The thylakoid membranes exhibited six major DSC bands, with maxima between about 43 and 87 degrees C. The heat sorption curves were analyzed both by mathematical deconvolution of the overall endotherm and by a successive annealing procedure; these yielded similar thermodynamic parameters, transition temperature and calorimetric enthalpy. A systematic comparison of the DSC and CD data on samples with different levels of complexity revealed that the heat-induced disassembly of chirally organized macrodomains contributes profoundly to the first endothermic event, a weak and broad DSC band between 43 and 48 degrees C. Similarly to the main macrodomain-associated CD signals, this low enthalpy band could be diminished by prolonged photoinhibitory preillumination, the extent of which depended on the temperature of preillumination. By means of nondenaturing, "green" gel electrophoresis and CD fingerprinting, it is shown that the second main endotherm, around 60 degrees C, originates to a large extent from the monomerization of LHCII trimers. The main DSC band, around 70 degrees C, which exhibits the highest enthalpy change, and another band around 75-77 degrees C relate to the dismantling of LHCII and other pigment-protein complexes, which under physiologically relevant conditions cannot be induced by light. The currently available data suggest the following sequence of events of thermo-optically inducible changes: (i) unstacking of membranes, followed by (ii) lateral disassembly of the chiral macrodomains and (iii) monomerization of LHCII trimers. We propose that thermo-optical structural reorganizations provide a structural flexibility, which is proportional to the intensity of the excess excitation, while for their localized nature, the structural stability of the system can be retained.


Asunto(s)
Microdominios de Membrana/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Tilacoides/química , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Hordeum/química , Calor , Luz , Complejos de Proteína Captadores de Luz , Cloruro de Magnesio/farmacología , Microdominios de Membrana/efectos de la radiación , Concentración Osmolar , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Complejo de Proteína del Fotosistema II , Termodinámica , Tilacoides/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA