Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 475(14): 2395-2416, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29976570

RESUMEN

ß-Ureidopropionase (ßUP) catalyzes the third step of the reductive pyrimidine catabolic pathway responsible for breakdown of uracil-, thymine- and pyrimidine-based antimetabolites such as 5-fluorouracil. Nitrilase-like ßUPs use a tetrad of conserved residues (Cys233, Lys196, Glu119 and Glu207) for catalysis and occur in a variety of oligomeric states. Positive co-operativity toward the substrate N-carbamoyl-ß-alanine and an oligomerization-dependent mechanism of substrate activation and product inhibition have been reported for the enzymes from some species but not others. Here, the activity of recombinant human ßUP is shown to be similarly regulated by substrate and product, but in a pH-dependent manner. Existing as a homodimer at pH 9, the enzyme increasingly associates to form octamers and larger oligomers with decreasing pH. Only at physiological pH is the enzyme responsive to effector binding, with N-carbamoyl-ß-alanine causing association to more active higher molecular mass species, and ß-alanine dissociation to inactive dimers. The parallel between the pH and ligand-induced effects suggests that protonation state changes play a crucial role in the allosteric regulation mechanism. Disruption of dimer-dimer interfaces by site-directed mutagenesis generated dimeric, inactive enzyme variants. The crystal structure of the T299C variant refined to 2.08 Šresolution revealed high structural conservation between human and fruit fly ßUP, and supports the hypothesis that enzyme activation by oligomer assembly involves ordering of loop regions forming the entrance to the active site at the dimer-dimer interface, effectively positioning the catalytically important Glu207 in the active site.


Asunto(s)
Amidohidrolasas/química , Multimerización de Proteína , Regulación Alostérica , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Sustitución de Aminoácidos , Animales , Antineoplásicos/farmacocinética , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Concentración de Iones de Hidrógeno , Mutación Missense , Dominios Proteicos
2.
BMC Cancer ; 17(1): 650, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28915803

RESUMEN

BACKGROUND: Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. METHODS: MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. RESULTS: We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFß) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFß isoform 2 (TGFß2), TGFß receptor type 1 (TßR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical inhibition demonstrated that TRAP-dependent migration and proliferation is regulated via TGFß2/TßR, whereas proliferation beyond basal levels is regulated through CD44. CONCLUSION: Altogether, TRAP promotes metastasis-related cell properties in MDA-MB-231 breast cancer cells via TGFß2/TßR and CD44, thereby identifying a potential signaling mechanism associated to TRAP action in breast cancer cells.


Asunto(s)
Receptores de Hialuranos/metabolismo , Fosfatasa Ácida Tartratorresistente/fisiología , Factor de Crecimiento Transformador beta2/fisiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Forma de la Célula , Femenino , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Transducción de Señal
3.
Calcif Tissue Int ; 101(1): 92-101, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28303318

RESUMEN

Phosphorylated osteopontin (OPN) inhibits hydroxyapatite crystal formation and growth, and bone alkaline phosphatase (BALP) promotes extracellular mineralization via the release of inorganic phosphate from the mineralization inhibitor inorganic pyrophosphate (PPi). Tartrate-resistant acid phosphatase (TRAP), produced by osteoclasts, osteoblasts, and osteocytes, exhibits potent phosphatase activity towards OPN; however, its potential capacity as a regulator of mineralization has not previously been addressed. We compared the efficiency of BALP and TRAP towards the endogenous substrates for BALP, i.e., PPi and pyridoxal 5'-phosphate (PLP), and their impact on mineralization in vitro via dephosphorylation of bovine milk OPN. TRAP showed higher phosphatase activity towards phosphorylated OPN and PPi compared to BALP, whereas the activity of TRAP and BALP towards PLP was comparable. Bovine milk OPN could be completely dephosphorylated by TRAP, liberating all its 28 phosphates, whereas BALP dephosphorylated at most 10 phosphates. OPN, dephosphorylated by either BALP or TRAP, showed a partially or completely attenuated phosphorylation-dependent inhibitory capacity, respectively, compared to native OPN on the formation of mineralized nodules. Thus, there are phosphorylations in OPN important for inhibition of mineralization that are removed by TRAP but not by BALP. In conclusion, our data indicate that both BALP and TRAP can alleviate the inhibitory effect of OPN on mineralization, suggesting a potential role for TRAP in skeletal mineralization. Further studies are warranted to explore the possible physiological relevance of TRAP in bone mineralization.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Calcificación Fisiológica/fisiología , Fosfatasa Ácida Tartratorresistente/metabolismo , Animales , Bovinos , Línea Celular , Difosfatos/metabolismo , Humanos , Osteoblastos/metabolismo , Osteopontina/metabolismo
4.
Exp Cell Res ; 339(1): 154-62, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26428664

RESUMEN

Tartrate-resistant acid phosphatase (TRAP/ACP5/uteroferrin/purple acid phosphatase/PP5) has received considerable attention as a newly discovered proinvasion metastasis driver associated with different malignancies. This renders TRAP an interesting target for novel anti-cancer therapy approaches. TRAP exists as two isoforms, 5a and 5b, where the 5a isoform represents an enzymatically less active monomeric precursor to the more enzymatically active 5b isoform generated by proteolytic excision of a repressive loop domain. Recently, three novel lead compounds were identified by fragment-based screening and demonstrated to be efficient TRAP enzyme inhibitors in vitro. We conclude that one of the three compounds i.e. 5-phenylnicotinic acid (CD13) was efficient as a TRAP inhibitor with Kic values in the low micromolar range towards the TRAP 5b isoform, but was not able to inhibit the TRAP 5a isoform. Structure-based docking revealed similar interactions of CD13 with the active site in both TRAP isoforms. In stably TRAP-overexpressing MDA-MB-231 breast cancer cells, CD13 inhibited intracellular TRAP activity and showed no cytotoxicity at 200 µM. Furthermore, CD13 selectively blocked the TRAP 5b isoform compared to the TRAP 5a in cultured cells, indicating the usefulness of CD13 for assessing the different biological functions of the two TRAP isoforms 5a and 5b in cell systems. Moreover, inhibition of cell migration and invasion of stably TRAP-overexpressing MDA-MB-231 by CD13 was observed. These data establish a proof of principle that a small chemical inhibitor of the TRAP enzyme can block TRAP-dependent functions in cancer cells.


Asunto(s)
Fosfatasa Ácida/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Antígenos CD13/metabolismo , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Isoenzimas/metabolismo , Ácidos Nicotínicos/farmacología , Fosfatasa Ácida/genética , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Antígenos CD13/genética , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Hidroxibenzoatos/química , Isoenzimas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fosfatasa Ácida Tartratorresistente , Células Tumorales Cultivadas
5.
Biochim Biophys Acta ; 1822(7): 1096-108, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22525402

RESUMEN

ß-ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyzes the conversion of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid to ß-alanine and ß-aminoisobutyric acid, ammonia and CO(2). To date, only five genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 11 newly identified ß-ureidopropionase deficient patients as well as the analysis of the mutations in a three-dimensional framework. Patients presented mainly with neurological abnormalities (intellectual disabilities, seizures, abnormal tonus regulation, microcephaly, and malformations on neuro-imaging) and markedly elevated levels of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid in urine and plasma. Analysis of UPB1, encoding ß-ureidopropionase, showed 6 novel missense mutations and one novel splice-site mutation. Heterologous expression of the 6 mutant enzymes in Escherichia coli showed that all mutations yielded mutant ß-ureidopropionase proteins with significantly decreased activity. Analysis of a homology model of human ß-ureidopropionase generated using the crystal structure of the enzyme from Drosophila melanogaster indicated that the point mutations p.G235R, p.R236W and p.S264R lead to amino acid exchanges in the active site and therefore affect substrate binding and catalysis. The mutations L13S, R326Q and T359M resulted most likely in folding defects and oligomer assembly impairment. Two mutations were identified in several unrelated ß-ureidopropionase patients, indicating that ß-ureidopropionase deficiency may be more common than anticipated.


Asunto(s)
Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Enfermedades del Sistema Nervioso Central/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Pirimidinas/metabolismo , Adulto , Secuencia de Aminoácidos , Sustitución de Aminoácidos/fisiología , Ácidos Aminoisobutíricos/sangre , Ácidos Aminoisobutíricos/orina , Animales , Biocatálisis , Dominio Catalítico/fisiología , Enfermedades del Sistema Nervioso Central/enzimología , Niño , Preescolar , Drosophila melanogaster , Escherichia coli , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Missense , Mutación Puntual , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Errores Innatos del Metabolismo de la Purina-Pirimidina/enzimología , Grupos Raciales/genética , beta-Alanina/sangre , beta-Alanina/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...